|
|
|
@ -440,114 +440,3 @@ def all_to_all_uneven(
|
|
|
|
|
inputs.requires_grad
|
|
|
|
|
), "Input must require grad to assure that backward is executed, otherwise it might hang the program."
|
|
|
|
|
return AllToAllUneven.apply(inputs, input_split_sizes, output_split_sizes, group, overlap)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ===========================================================
|
|
|
|
|
# This code section was modified from
|
|
|
|
|
# https://github.com/microsoft/DeepSpeed/blob/3d347276ce80e1a29e777c839d1d7fabe8e5f034/deepspeed/moe/mappings.py
|
|
|
|
|
|
|
|
|
|
# Copyright (c) Microsoft Corporation.
|
|
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
|
|
|
|
|
# DeepSpeed Team
|
|
|
|
|
|
|
|
|
|
# The file has been adapted from the following Megatron-LM file:
|
|
|
|
|
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/mpu/mappings.py
|
|
|
|
|
# Git commit hash: 9dc3c42a84aa656f583703cf8b6b4f79f712b796
|
|
|
|
|
# We retain the following copyright from the original files:
|
|
|
|
|
|
|
|
|
|
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
# TODO: used when non-moe are tp but moe are not
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _gather_tokens(input_, dim: int, tp_group: ProcessGroup):
|
|
|
|
|
"""Gather tensors and concatenate them along a dimension"""
|
|
|
|
|
|
|
|
|
|
input_ = input_.contiguous()
|
|
|
|
|
# Size and dimension.
|
|
|
|
|
rank = tp_group.rank()
|
|
|
|
|
|
|
|
|
|
tensor_list = [torch.empty_like(input_) for _ in range(tp_group.size())]
|
|
|
|
|
tensor_list[rank] = input_
|
|
|
|
|
dist.all_gather(tensor_list, input_, group=tp_group)
|
|
|
|
|
|
|
|
|
|
# Note: torch.cat already creates a contiguous tensor.
|
|
|
|
|
output = torch.cat(tensor_list, dim=dim).contiguous()
|
|
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _drop_tokens(input_, dim: int, tp_group: ProcessGroup):
|
|
|
|
|
"""Divide a tensor among the tensor parallel ranks"""
|
|
|
|
|
|
|
|
|
|
total_chunks = tp_group.size()
|
|
|
|
|
this_chunk = tp_group.rank()
|
|
|
|
|
assert (
|
|
|
|
|
input_.shape[dim] % total_chunks == 0
|
|
|
|
|
), f"input dimension {dim} ({input_.shape[dim]}) is not divisible by tensor parallel world size ({total_chunks})"
|
|
|
|
|
chunk_size = input_.shape[dim] // total_chunks
|
|
|
|
|
|
|
|
|
|
return torch.narrow(input_, dim, this_chunk * chunk_size, chunk_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _GatherTokens(torch.autograd.Function):
|
|
|
|
|
"""All gather tokens among the tensor parallel ranks"""
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def forward(ctx, input_: torch.Tensor, dim: int, tp_group: ProcessGroup) -> torch.Tensor:
|
|
|
|
|
ctx.dim = dim
|
|
|
|
|
ctx.tp_group = tp_group
|
|
|
|
|
return _gather_tokens(input_, dim, tp_group)
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def backward(ctx, grad_output):
|
|
|
|
|
return _drop_tokens(grad_output, ctx.dim, ctx.tp_group), None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _DropTokens(torch.autograd.Function):
|
|
|
|
|
"Divide tokens equally among the tensor parallel ranks"
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def forward(ctx, input_: torch.Tensor, dim: int, tp_group: ProcessGroup) -> torch.Tensor:
|
|
|
|
|
ctx.dim = dim
|
|
|
|
|
ctx.tp_group = tp_group
|
|
|
|
|
return _drop_tokens(input_, dim, tp_group)
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def backward(ctx, input_: torch.Tensor) -> Tuple[torch.Tensor, None]:
|
|
|
|
|
return _gather_tokens(input_, ctx.dim, ctx.tp_group), None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gather_tokens(input_, dim: int, tp_group: ProcessGroup):
|
|
|
|
|
if tp_group.size() == 1:
|
|
|
|
|
# no tensor parallelism for non-experts
|
|
|
|
|
return input_
|
|
|
|
|
assert (
|
|
|
|
|
input_.requires_grad
|
|
|
|
|
), "Input must require grad to assure that backward is executed, otherwise it might hang the program."
|
|
|
|
|
return _GatherTokens.apply(input_, dim, tp_group)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def drop_tokens(input_, dim: int, tp_group: ProcessGroup):
|
|
|
|
|
if tp_group.size() == 1:
|
|
|
|
|
# no tensor parallelism for non-experts
|
|
|
|
|
return input_
|
|
|
|
|
assert (
|
|
|
|
|
input_.requires_grad
|
|
|
|
|
), "Input must require grad to assure that backward is executed, otherwise it might hang the program."
|
|
|
|
|
return _DropTokens.apply(input_, dim, tp_group)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ===========================================================
|
|
|
|
|