mirror of https://github.com/hpcaitech/ColossalAI
[embedding] polish parallel embedding tablewise (#1545)
parent
46c6cc79a9
commit
64169f3e8f
|
@ -2,8 +2,12 @@ from .cache_mgr import CachedParamMgr, EvictionStrategy
|
|||
from .copyer import LimitBuffIndexCopyer
|
||||
from .freq_aware_embedding import FreqAwareEmbeddingBag
|
||||
from .parallel_freq_aware_embedding import ParallelFreqAwareEmbeddingBag
|
||||
from .parallel_freq_aware_embedding_tablewise import ParallelFreqAwareEmbeddingBagTablewise, TablewiseEmbeddingBagConfig, ParallelFreqAwareEmbeddingBagTablewiseSpiltCache
|
||||
from .embedding_config import TablewiseEmbeddingBagConfig
|
||||
from .parallel_freq_aware_embedding_tablewise import ParallelFreqAwareEmbeddingBagTablewise
|
||||
from .parallel_freq_aware_embedding_tablewise_split_cache import ParallelFreqAwareEmbeddingBagTablewiseSpiltCache
|
||||
|
||||
__all__ = [
|
||||
'CachedParamMgr', 'LimitBuffIndexCopyer', 'FreqAwareEmbeddingBag', 'ParallelFreqAwareEmbeddingBag',
|
||||
'EvictionStrategy', 'ParallelFreqAwareEmbeddingBagTablewise', 'TablewiseEmbeddingBagConfig', 'ParallelFreqAwareEmbeddingBagTablewiseSpiltCache'
|
||||
'EvictionStrategy', 'ParallelFreqAwareEmbeddingBagTablewise', 'TablewiseEmbeddingBagConfig',
|
||||
'ParallelFreqAwareEmbeddingBagTablewiseSpiltCache'
|
||||
]
|
||||
|
|
|
@ -293,7 +293,7 @@ class CachedParamMgr(torch.nn.Module):
|
|||
Returns:
|
||||
torch.Tensor: indices on the cuda_cached_weight.
|
||||
"""
|
||||
with record_function("(zhg) get unique indices"):
|
||||
with record_function("(pre-id) get unique indices"):
|
||||
ids = ids.to(self._cache_dev)
|
||||
cpu_row_idxs, repeat_times = torch.unique(self.idx_map.index_select(0, ids), return_counts=True)
|
||||
|
||||
|
@ -303,7 +303,7 @@ class CachedParamMgr(torch.nn.Module):
|
|||
f"Please increase cuda_row_num or decrease the training batch size."
|
||||
self.evict_backlist = cpu_row_idxs
|
||||
|
||||
with record_function("(zhg) get cpu row idxs"):
|
||||
with record_function("(pre-id) get cpu row idxs"):
|
||||
comm_cpu_row_idxs = cpu_row_idxs[torch.isin(cpu_row_idxs, self.cached_idx_map, invert=True)]
|
||||
|
||||
self.num_hits_history.append(len(cpu_row_idxs) - len(comm_cpu_row_idxs))
|
||||
|
@ -311,18 +311,18 @@ class CachedParamMgr(torch.nn.Module):
|
|||
self.num_write_back_history.append(0)
|
||||
|
||||
# move sure the cuda rows will not be evicted!
|
||||
with record_function("(zhg) cache update"):
|
||||
with record_function("(pre-id) cache update"):
|
||||
self._prepare_rows_on_cuda(comm_cpu_row_idxs)
|
||||
self.evict_backlist = torch.tensor([], device=cpu_row_idxs.device, dtype=cpu_row_idxs.dtype)
|
||||
|
||||
self.evict_backlist = torch.tensor([], device=cpu_row_idxs.device, dtype=cpu_row_idxs.dtype)
|
||||
|
||||
with record_function("(zhg) embed cpu rows idx -> cache gpu row idxs"):
|
||||
with record_function("(pre-id) embed cpu rows idx -> cache gpu row idxs"):
|
||||
gpu_row_idxs = self._id_to_cached_cuda_id(ids)
|
||||
|
||||
# update for LFU.
|
||||
if self._evict_strategy == EvictionStrategy.LFU:
|
||||
unique_gpu_row_idxs = self.inverted_cached_idx[cpu_row_idxs]
|
||||
self.freq_cnter.scatter_add_(0, unique_gpu_row_idxs, repeat_times)
|
||||
with record_function("(pre-id) lfu cnter updates"):
|
||||
unique_gpu_row_idxs = self.inverted_cached_idx[cpu_row_idxs]
|
||||
self.freq_cnter.scatter_add_(0, unique_gpu_row_idxs, repeat_times)
|
||||
|
||||
return gpu_row_idxs
|
||||
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
import torch
|
||||
|
||||
|
||||
class TablewiseEmbeddingBagConfig:
|
||||
'''
|
||||
example:
|
||||
def prepare_tablewise_config(args, cache_ratio, ...):
|
||||
embedding_bag_config_list: List[TablewiseEmbeddingBagConfig] = []
|
||||
...
|
||||
return embedding_bag_config_list
|
||||
'''
|
||||
|
||||
def __init__(self,
|
||||
num_embeddings: int,
|
||||
cuda_row_num: int,
|
||||
assigned_rank: int = 0,
|
||||
buffer_size=50_000,
|
||||
ids_freq_mapping=None,
|
||||
initial_weight: torch.tensor = None,
|
||||
name: str = ""):
|
||||
self.num_embeddings = num_embeddings
|
||||
self.cuda_row_num = cuda_row_num
|
||||
self.assigned_rank = assigned_rank
|
||||
self.buffer_size = buffer_size
|
||||
self.ids_freq_mapping = ids_freq_mapping
|
||||
self.initial_weight = initial_weight
|
||||
self.name = name
|
|
@ -1,42 +1,14 @@
|
|||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.profiler import record_function
|
||||
from typing import List
|
||||
import abc
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .freq_aware_embedding import FreqAwareEmbeddingBag
|
||||
|
||||
from colossalai.tensor import ProcessGroup
|
||||
from .cache_mgr import EvictionStrategy
|
||||
|
||||
from .embedding_config import TablewiseEmbeddingBagConfig
|
||||
from colossalai.tensor import ProcessGroup
|
||||
from colossalai.nn._ops._utils import dual_all_to_all_tablewise
|
||||
|
||||
|
||||
class TablewiseEmbeddingBagConfig:
|
||||
'''
|
||||
example:
|
||||
def prepare_tablewise_config(args, cache_ratio, ...):
|
||||
embedding_bag_config_list: List[TablewiseEmbeddingBagConfig] = []
|
||||
...
|
||||
return embedding_bag_config_list
|
||||
'''
|
||||
|
||||
def __init__(self,
|
||||
num_embeddings: int,
|
||||
cuda_row_num: int,
|
||||
assigned_rank: int = 0,
|
||||
buffer_size=50_000,
|
||||
ids_freq_mapping=None,
|
||||
initial_weight: torch.tensor = None,
|
||||
name: str = ""):
|
||||
self.num_embeddings = num_embeddings
|
||||
self.cuda_row_num = cuda_row_num
|
||||
self.assigned_rank = assigned_rank
|
||||
self.buffer_size = buffer_size
|
||||
self.ids_freq_mapping = ids_freq_mapping
|
||||
self.initial_weight = initial_weight
|
||||
self.name = name
|
||||
from typing import List
|
||||
|
||||
|
||||
class ParallelFreqAwareEmbeddingBagTablewise(FreqAwareEmbeddingBag):
|
||||
|
@ -44,6 +16,7 @@ class ParallelFreqAwareEmbeddingBagTablewise(FreqAwareEmbeddingBag):
|
|||
all tables assigned to this class instance are managed by a single FreqAwareEmbeddingBag.
|
||||
Those parameters in TablewiseEmbeddingBagConfig are ignored: cuda_row_num, buffer_size, initial_weight.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
embedding_bag_config_list: List[TablewiseEmbeddingBagConfig],
|
||||
embedding_dim: int,
|
||||
|
@ -98,9 +71,9 @@ class ParallelFreqAwareEmbeddingBagTablewise(FreqAwareEmbeddingBag):
|
|||
for table_i, table_num_embeddings in enumerate(self.global_table_num_embeddings_list):
|
||||
if self.rank_of_tables[table_i] == self.rank:
|
||||
self.idx_offset_list.append(offset_cumsum)
|
||||
else :
|
||||
else:
|
||||
offset_cumsum += table_num_embeddings
|
||||
|
||||
|
||||
# prepare list shape for all_to_all output
|
||||
self.embedding_dim_per_rank = [0 for i in range(self.world_size)]
|
||||
for rank in self.rank_of_tables:
|
||||
|
@ -112,8 +85,8 @@ class ParallelFreqAwareEmbeddingBagTablewise(FreqAwareEmbeddingBag):
|
|||
local_offsets_list: List(torch.Tensor) = []
|
||||
if per_sample_weights != None:
|
||||
local_per_sample_weights_list: List(torch.Tensor) = []
|
||||
|
||||
offset_pre_end = 0 # local_offsets trick
|
||||
|
||||
offset_pre_end = 0 # local_offsets trick
|
||||
for i, handle_table in enumerate(self.assigned_table_list):
|
||||
indices_start_position = offsets[batch_size * handle_table]
|
||||
if (not self.include_last_offset) and (batch_size * (handle_table + 1) >= indices.shape[0]):
|
||||
|
@ -122,27 +95,29 @@ class ParallelFreqAwareEmbeddingBagTablewise(FreqAwareEmbeddingBag):
|
|||
else:
|
||||
indices_end_position = offsets[batch_size * (handle_table + 1)]
|
||||
# 1. local_indices_list:
|
||||
local_indices_list.append(indices.narrow(0, indices_start_position, indices_end_position
|
||||
- indices_start_position).sub(self.idx_offset_list[i]))
|
||||
local_indices_list.append(
|
||||
indices.narrow(0, indices_start_position,
|
||||
indices_end_position - indices_start_position).sub(self.idx_offset_list[i]))
|
||||
# 2. local_offsets_list:
|
||||
if i + 1 == len(self.assigned_table_list):
|
||||
# till-the-end special case
|
||||
if not self.include_last_offset:
|
||||
local_offsets = offsets.narrow(0, batch_size * handle_table,
|
||||
batch_size).add(offset_pre_end - offsets[batch_size * (handle_table)])
|
||||
else :
|
||||
local_offsets = offsets.narrow(0, batch_size * handle_table,
|
||||
batch_size + 1).add(offset_pre_end - offsets[batch_size * (handle_table)])
|
||||
batch_size).add(offset_pre_end - offsets[batch_size *
|
||||
(handle_table)])
|
||||
else:
|
||||
local_offsets = offsets.narrow(0, batch_size * handle_table, batch_size +
|
||||
1).add(offset_pre_end - offsets[batch_size * (handle_table)])
|
||||
local_offsets_list.append(local_offsets)
|
||||
else:
|
||||
local_offsets = offsets.narrow(0, batch_size * handle_table,
|
||||
batch_size + 1).add(offset_pre_end - offsets[batch_size * (handle_table)])
|
||||
local_offsets = offsets.narrow(0, batch_size * handle_table, batch_size +
|
||||
1).add(offset_pre_end - offsets[batch_size * (handle_table)])
|
||||
offset_pre_end = local_offsets[-1]
|
||||
local_offsets_list.append(local_offsets[:-1])
|
||||
# 3. local_per_sample_weights_list:
|
||||
if per_sample_weights != None:
|
||||
local_per_sample_weights_list.append(per_sample_weights[indices_start_position:indices_end_position])
|
||||
|
||||
|
||||
local_indices = torch.cat(local_indices_list, 0)
|
||||
local_offsets = torch.cat(local_offsets_list, 0)
|
||||
local_per_sample_weights = None
|
||||
|
@ -150,148 +125,21 @@ class ParallelFreqAwareEmbeddingBagTablewise(FreqAwareEmbeddingBag):
|
|||
local_per_sample_weights = torch.cat(local_per_sample_weights_list, 0)
|
||||
with torch.no_grad():
|
||||
reorder_ids = self.cache_weight_mgr.prepare_ids(local_indices)
|
||||
|
||||
|
||||
local_output = F.embedding_bag(reorder_ids.cuda(), self.cache_weight_mgr.cuda_cached_weight, local_offsets,
|
||||
self.max_norm, self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
|
||||
local_per_sample_weights, self.include_last_offset, self.padding_idx)
|
||||
local_output = torch.cat(local_output.split(batch_size),1)
|
||||
|
||||
local_output = torch.cat(local_output.split(batch_size), 1)
|
||||
|
||||
remains = batch_size % self.world_size
|
||||
scatter_strides = [batch_size // self.world_size + int(i < remains) for i in range(self.world_size)]
|
||||
output_full = dual_all_to_all_tablewise(local_output, self.pg, scatter_strides, self.embedding_dim_per_rank)
|
||||
if shape_hook is not None:
|
||||
output_full = shape_hook(output_full)
|
||||
return output_full
|
||||
|
||||
|
||||
def print_comm_stats_(self):
|
||||
self.cache_weight_mgr.print_comm_stats()
|
||||
|
||||
def element_size(self):
|
||||
return self.weight.element_size()
|
||||
|
||||
class ParallelFreqAwareEmbeddingBagTablewiseSpiltCache(abc.ABC, nn.Module):
|
||||
"""
|
||||
every table assigned to this class instance is managed by a FreqAwareEmbeddingBag.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
embedding_bag_config_list: List[TablewiseEmbeddingBagConfig],
|
||||
embedding_dim: int,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
mode='mean',
|
||||
include_last_offset=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
warmup_ratio=0.7,
|
||||
pin_weight=False,
|
||||
evict_strategy: EvictionStrategy = EvictionStrategy.LFU):
|
||||
super(ParallelFreqAwareEmbeddingBagTablewiseSpiltCache, self).__init__()
|
||||
self.rank = dist.get_rank()
|
||||
self.world_size = dist.get_world_size()
|
||||
self.rank_of_tables = [config.assigned_rank for config in embedding_bag_config_list]
|
||||
self.global_table_num_embeddings_list = [config.num_embeddings for config in embedding_bag_config_list]
|
||||
self.global_tables_num = len(embedding_bag_config_list)
|
||||
self.global_tables_offsets = torch.cumsum(torch.tensor([0] + self.global_table_num_embeddings_list), 0).cuda()
|
||||
|
||||
self.assigned_table_list: List[int] = []
|
||||
for i, rank in enumerate(self.rank_of_tables):
|
||||
if rank == self.rank:
|
||||
self.assigned_table_list.append(i)
|
||||
self.include_last_offset = include_last_offset
|
||||
self.pg = ProcessGroup(tp_degree=self.world_size)
|
||||
|
||||
# prepare FreqAwareEmbeddingBag list
|
||||
|
||||
self.freq_aware_embedding_bag_list: nn.ModuleList = nn.ModuleList()
|
||||
for config in embedding_bag_config_list:
|
||||
if config.assigned_rank != self.rank:
|
||||
continue
|
||||
self.freq_aware_embedding_bag_list.append(
|
||||
FreqAwareEmbeddingBag(num_embeddings=config.num_embeddings,
|
||||
embedding_dim=embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=config.initial_weight,
|
||||
mode=mode,
|
||||
include_last_offset=include_last_offset,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
cuda_row_num=config.cuda_row_num,
|
||||
ids_freq_mapping=config.ids_freq_mapping,
|
||||
warmup_ratio=warmup_ratio,
|
||||
buffer_size=config.buffer_size,
|
||||
pin_weight=pin_weight,
|
||||
evict_strategy=evict_strategy))
|
||||
|
||||
# prepare list shape for all_to_all output
|
||||
self.embedding_dim_per_rank = [0 for i in range(self.world_size)]
|
||||
for rank in self.rank_of_tables:
|
||||
self.embedding_dim_per_rank[rank] += embedding_dim
|
||||
|
||||
def forward(self, indices: torch.Tensor, offsets: torch.Tensor = None, per_sample_weights=None, shape_hook=None):
|
||||
# determine indices to handle
|
||||
batch_size = (offsets.shape[0]) // self.global_tables_num
|
||||
local_output_list = []
|
||||
for i, handle_table in enumerate(self.assigned_table_list):
|
||||
with record_function("(tablewise) prepare indices and offsets"):
|
||||
with record_function("part 1"):
|
||||
indices_start_position = offsets[batch_size * handle_table]
|
||||
if (not self.include_last_offset) and (batch_size * (handle_table + 1) >= indices.shape[0]):
|
||||
# till the end special case
|
||||
indices_end_position = indices.shape[0]
|
||||
else:
|
||||
indices_end_position = offsets[batch_size * (handle_table + 1)]
|
||||
with record_function("part 2"):
|
||||
# local_indices = indices[indices_start_position:indices_end_position] - self.global_tables_offsets[handle_table]
|
||||
local_indices = indices.narrow(0, indices_start_position, indices_end_position
|
||||
- indices_start_position).sub(self.global_tables_offsets[handle_table])
|
||||
if self.include_last_offset:
|
||||
# local_offsets = offsets[batch_size * handle_table:batch_size * (handle_table + 1) + 1] - offsets[batch_size * (handle_table)]
|
||||
local_offsets = offsets.narrow(0, batch_size * handle_table,
|
||||
batch_size + 1).sub(offsets[batch_size * (handle_table)])
|
||||
else:
|
||||
# local_offsets = offsets[batch_size * handle_table:batch_size * (handle_table + 1)] - offsets[batch_size * (handle_table)]
|
||||
local_offsets = offsets.narrow(0, batch_size * handle_table,
|
||||
batch_size).sub(offsets[batch_size * (handle_table)])
|
||||
local_per_sample_weights = None
|
||||
if per_sample_weights != None:
|
||||
local_per_sample_weights = per_sample_weights[indices_start_position:indices_end_position]
|
||||
with record_function("(tablewise) tablewise forward"):
|
||||
local_output_list.append(self.freq_aware_embedding_bag_list[i](local_indices, local_offsets,
|
||||
local_per_sample_weights))
|
||||
|
||||
# get result of shape = (batch_size, (len(assigned_table_list)*embedding_dim))
|
||||
local_output = torch.cat(local_output_list, 1)
|
||||
# then concatenate those local_output on the second demension.
|
||||
# use all_to_all
|
||||
remains = batch_size % self.world_size
|
||||
scatter_strides = [batch_size // self.world_size + int(i < remains) for i in range(self.world_size)]
|
||||
output_full = dual_all_to_all_tablewise(local_output, self.pg, scatter_strides, self.embedding_dim_per_rank)
|
||||
if shape_hook is not None:
|
||||
output_full = shape_hook(output_full)
|
||||
return output_full
|
||||
|
||||
def element_size(self):
|
||||
if len(self.assigned_table_list) == 0:
|
||||
return 0
|
||||
return self.freq_aware_embedding_bag_list[0].cache_weight_mgr.weight.element_size()
|
||||
|
||||
def print_comm_stats_(self):
|
||||
cuda_to_cpu_elem_num = 0
|
||||
cpu_to_cuda_elem_num = 0
|
||||
for freq_aware_embedding_bag in self.freq_aware_embedding_bag_list:
|
||||
cuda_to_cpu_elem_num += freq_aware_embedding_bag.cache_weight_mgr._cuda_to_cpu_numel
|
||||
cpu_to_cuda_elem_num += freq_aware_embedding_bag.cache_weight_mgr._cpu_to_cuda_numel
|
||||
print(
|
||||
f"CUDA->CPU num: {cuda_to_cpu_elem_num / 1e6} M elem"
|
||||
)
|
||||
print(
|
||||
f"CPU->CUDA num: {cpu_to_cuda_elem_num / 1e6} M elem"
|
||||
)
|
||||
|
|
|
@ -0,0 +1,138 @@
|
|||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.profiler import record_function
|
||||
|
||||
from .freq_aware_embedding import FreqAwareEmbeddingBag
|
||||
|
||||
from colossalai.tensor import ProcessGroup
|
||||
from colossalai.nn._ops._utils import dual_all_to_all_tablewise
|
||||
from .embedding_config import TablewiseEmbeddingBagConfig
|
||||
from .cache_mgr import EvictionStrategy
|
||||
|
||||
from typing import List
|
||||
import abc
|
||||
|
||||
|
||||
class ParallelFreqAwareEmbeddingBagTablewiseSpiltCache(abc.ABC, nn.Module):
|
||||
"""
|
||||
every table assigned to this class instance is managed by a FreqAwareEmbeddingBag.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
embedding_bag_config_list: List[TablewiseEmbeddingBagConfig],
|
||||
embedding_dim: int,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
mode='mean',
|
||||
include_last_offset=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
warmup_ratio=0.7,
|
||||
pin_weight=False,
|
||||
evict_strategy: EvictionStrategy = EvictionStrategy.LFU):
|
||||
super(ParallelFreqAwareEmbeddingBagTablewiseSpiltCache, self).__init__()
|
||||
self.rank = dist.get_rank()
|
||||
self.world_size = dist.get_world_size()
|
||||
self.rank_of_tables = [config.assigned_rank for config in embedding_bag_config_list]
|
||||
self.global_table_num_embeddings_list = [config.num_embeddings for config in embedding_bag_config_list]
|
||||
self.global_tables_num = len(embedding_bag_config_list)
|
||||
self.global_tables_offsets = torch.cumsum(torch.tensor([0] + self.global_table_num_embeddings_list), 0).cuda()
|
||||
|
||||
self.assigned_table_list: List[int] = []
|
||||
for i, rank in enumerate(self.rank_of_tables):
|
||||
if rank == self.rank:
|
||||
self.assigned_table_list.append(i)
|
||||
self.include_last_offset = include_last_offset
|
||||
self.pg = ProcessGroup(tp_degree=self.world_size)
|
||||
|
||||
# prepare FreqAwareEmbeddingBag list
|
||||
|
||||
self.freq_aware_embedding_bag_list: nn.ModuleList = nn.ModuleList()
|
||||
for config in embedding_bag_config_list:
|
||||
if config.assigned_rank != self.rank:
|
||||
continue
|
||||
self.freq_aware_embedding_bag_list.append(
|
||||
FreqAwareEmbeddingBag(num_embeddings=config.num_embeddings,
|
||||
embedding_dim=embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=config.initial_weight,
|
||||
mode=mode,
|
||||
include_last_offset=include_last_offset,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
cuda_row_num=config.cuda_row_num,
|
||||
ids_freq_mapping=config.ids_freq_mapping,
|
||||
warmup_ratio=warmup_ratio,
|
||||
buffer_size=config.buffer_size,
|
||||
pin_weight=pin_weight,
|
||||
evict_strategy=evict_strategy))
|
||||
|
||||
# prepare list shape for all_to_all output
|
||||
self.embedding_dim_per_rank = [0 for i in range(self.world_size)]
|
||||
for rank in self.rank_of_tables:
|
||||
self.embedding_dim_per_rank[rank] += embedding_dim
|
||||
|
||||
def forward(self, indices: torch.Tensor, offsets: torch.Tensor = None, per_sample_weights=None, shape_hook=None):
|
||||
# determine indices to handle
|
||||
batch_size = (offsets.shape[0]) // self.global_tables_num
|
||||
local_output_list = []
|
||||
for i, handle_table in enumerate(self.assigned_table_list):
|
||||
with record_function("(tablewise) prepare indices and offsets"):
|
||||
with record_function("part 1"):
|
||||
indices_start_position = offsets[batch_size * handle_table]
|
||||
if (not self.include_last_offset) and (batch_size * (handle_table + 1) >= indices.shape[0]):
|
||||
# till the end special case
|
||||
indices_end_position = indices.shape[0]
|
||||
else:
|
||||
indices_end_position = offsets[batch_size * (handle_table + 1)]
|
||||
with record_function("part 2"):
|
||||
# local_indices = indices[indices_start_position:indices_end_position] - self.global_tables_offsets[handle_table]
|
||||
local_indices = indices.narrow(0, indices_start_position, indices_end_position -
|
||||
indices_start_position).sub(self.global_tables_offsets[handle_table])
|
||||
if self.include_last_offset:
|
||||
# local_offsets = offsets[batch_size * handle_table:batch_size * (handle_table + 1) + 1] - offsets[batch_size * (handle_table)]
|
||||
local_offsets = offsets.narrow(0, batch_size * handle_table,
|
||||
batch_size + 1).sub(offsets[batch_size * (handle_table)])
|
||||
else:
|
||||
# local_offsets = offsets[batch_size * handle_table:batch_size * (handle_table + 1)] - offsets[batch_size * (handle_table)]
|
||||
local_offsets = offsets.narrow(0, batch_size * handle_table,
|
||||
batch_size).sub(offsets[batch_size * (handle_table)])
|
||||
local_per_sample_weights = None
|
||||
if per_sample_weights != None:
|
||||
local_per_sample_weights = per_sample_weights[indices_start_position:indices_end_position]
|
||||
with record_function("(tablewise) tablewise forward"):
|
||||
local_output_list.append(self.freq_aware_embedding_bag_list[i](local_indices, local_offsets,
|
||||
local_per_sample_weights))
|
||||
|
||||
# get result of shape = (batch_size, (len(assigned_table_list)*embedding_dim))
|
||||
local_output = torch.cat(local_output_list, 1)
|
||||
# then concatenate those local_output on the second demension.
|
||||
# use all_to_all
|
||||
remains = batch_size % self.world_size
|
||||
scatter_strides = [batch_size // self.world_size + int(i < remains) for i in range(self.world_size)]
|
||||
output_full = dual_all_to_all_tablewise(local_output, self.pg, scatter_strides, self.embedding_dim_per_rank)
|
||||
if shape_hook is not None:
|
||||
output_full = shape_hook(output_full)
|
||||
return output_full
|
||||
|
||||
def element_size(self):
|
||||
if len(self.assigned_table_list) == 0:
|
||||
return 0
|
||||
return self.freq_aware_embedding_bag_list[0].cache_weight_mgr.weight.element_size()
|
||||
|
||||
def print_comm_stats_(self):
|
||||
cuda_to_cpu_elem_num = 0
|
||||
cpu_to_cuda_elem_num = 0
|
||||
for freq_aware_embedding_bag in self.freq_aware_embedding_bag_list:
|
||||
cuda_to_cpu_elem_num += freq_aware_embedding_bag.cache_weight_mgr._cuda_to_cpu_numel
|
||||
cpu_to_cuda_elem_num += freq_aware_embedding_bag.cache_weight_mgr._cpu_to_cuda_numel
|
||||
print(f"CUDA->CPU num: {cuda_to_cpu_elem_num / 1e6} M elem")
|
||||
print(f"CPU->CUDA num: {cpu_to_cuda_elem_num / 1e6} M elem")
|
|
@ -13,7 +13,7 @@ from colossalai.testing import rerun_if_address_is_in_use
|
|||
from colossalai.tensor import ColoParameter, ProcessGroup, ShardSpec, ComputePattern, ComputeSpec, \
|
||||
ColoTensor, ColoTensorSpec
|
||||
from colossalai.nn.parallel.layers import CachedParamMgr, FreqAwareEmbeddingBag, ParallelFreqAwareEmbeddingBag, EvictionStrategy, \
|
||||
ParallelFreqAwareEmbeddingBagTablewise, TablewiseEmbeddingBagConfig, ParallelFreqAwareEmbeddingBagTablewiseSpiltCache
|
||||
ParallelFreqAwareEmbeddingBagTablewise, TablewiseEmbeddingBagConfig
|
||||
from typing import List
|
||||
|
||||
NUM_EMBED, EMBED_DIM = 10, 8
|
||||
|
@ -209,19 +209,28 @@ def run_parallel_freq_aware_embed_tablewise(rank, world_size):
|
|||
|
||||
# initialize weight
|
||||
# 3 feature tables. idx: 0~5, 6~10, 11~17
|
||||
weight_tables = torch.rand(18,5)
|
||||
weight_tables = torch.rand(18, 5)
|
||||
weight_table1 = weight_tables[0:6]
|
||||
weight_table2 = weight_tables[6:11]
|
||||
weight_table3 = weight_tables[11:18]
|
||||
embedding_bag_config_list: List[TablewiseEmbeddingBagConfig] = []
|
||||
embedding_bag_config_list.append(TablewiseEmbeddingBagConfig(
|
||||
num_embeddings=6, cuda_row_num=4, assigned_rank=0, initial_weight=weight_table1.clone().detach().cpu()))
|
||||
embedding_bag_config_list.append(TablewiseEmbeddingBagConfig(
|
||||
num_embeddings=5, cuda_row_num=4, assigned_rank=0, initial_weight=weight_table2.clone().detach().cpu()))
|
||||
embedding_bag_config_list.append(TablewiseEmbeddingBagConfig(
|
||||
num_embeddings=7, cuda_row_num=4, assigned_rank=1, initial_weight=weight_table3.clone().detach().cpu()))
|
||||
embedding_bag_config_list.append(
|
||||
TablewiseEmbeddingBagConfig(num_embeddings=6,
|
||||
cuda_row_num=4,
|
||||
assigned_rank=0,
|
||||
initial_weight=weight_table1.clone().detach().cpu()))
|
||||
embedding_bag_config_list.append(
|
||||
TablewiseEmbeddingBagConfig(num_embeddings=5,
|
||||
cuda_row_num=4,
|
||||
assigned_rank=0,
|
||||
initial_weight=weight_table2.clone().detach().cpu()))
|
||||
embedding_bag_config_list.append(
|
||||
TablewiseEmbeddingBagConfig(num_embeddings=7,
|
||||
cuda_row_num=4,
|
||||
assigned_rank=1,
|
||||
initial_weight=weight_table3.clone().detach().cpu()))
|
||||
if rank == 0:
|
||||
_weight = torch.cat([weight_table1, weight_table2],0)
|
||||
_weight = torch.cat([weight_table1, weight_table2], 0)
|
||||
else:
|
||||
_weight = weight_table3
|
||||
model = ParallelFreqAwareEmbeddingBagTablewise(
|
||||
|
@ -249,30 +258,31 @@ def run_parallel_freq_aware_embed_tablewise(rank, world_size):
|
|||
rand_grad = torch.rand(3, 5 * 3, dtype=res.dtype, device=res.device)
|
||||
if rank == 0:
|
||||
fake_grad = rand_grad[0:2]
|
||||
else :
|
||||
else:
|
||||
fake_grad = rand_grad[2:]
|
||||
res.backward(fake_grad)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
# check correctness
|
||||
# check correctness
|
||||
if rank == 0:
|
||||
ref_model = torch.nn.EmbeddingBag.from_pretrained(weight_tables.detach().clone(),
|
||||
include_last_offset=True,
|
||||
freeze=False).to(device)
|
||||
ref_optimizer = torch.optim.SGD(ref_model.parameters(), lr=1e-2)
|
||||
ref_fake_grad = torch.cat(rand_grad.split(5,1),0)
|
||||
ref_fake_grad = torch.cat(rand_grad.split(5, 1), 0)
|
||||
ref_res = ref_model(torch.tensor([1, 2, 3, 1, 5, 6, 7, 9, 6, 8, 13, 15, 11], device=device),
|
||||
torch.tensor([0, 3, 3, 5, 7, 8, 10, 10, 12, 13], device=device))
|
||||
ref_res.backward(ref_fake_grad)
|
||||
ref_optimizer.step()
|
||||
ref_optimizer.zero_grad()
|
||||
|
||||
|
||||
model.cache_weight_mgr.flush()
|
||||
recover_weight = model.cache_weight_mgr.weight.to(device)
|
||||
ref_weight = ref_model.weight.detach()[:11]
|
||||
assert torch.allclose(recover_weight, ref_weight), f"{recover_weight - ref_weight}"
|
||||
|
||||
|
||||
def run_parallel_freq_aware_embed_columnwise(rank, world_size):
|
||||
device = torch.device('cuda', torch.cuda.current_device())
|
||||
|
||||
|
@ -289,11 +299,12 @@ def run_parallel_freq_aware_embed_columnwise(rank, world_size):
|
|||
coloweight.set_process_group(ProcessGroup(tp_degree=world_size))
|
||||
coloweight.set_tensor_spec(ShardSpec(dims=[-1], num_partitions=[world_size]), ComputeSpec(ComputePattern.TP1D))
|
||||
|
||||
model = ParallelFreqAwareEmbeddingBag.from_pretrained(coloweight,
|
||||
include_last_offset=True,
|
||||
freeze=False,
|
||||
cuda_row_num=batch_size * 2,
|
||||
)
|
||||
model = ParallelFreqAwareEmbeddingBag.from_pretrained(
|
||||
coloweight,
|
||||
include_last_offset=True,
|
||||
freeze=False,
|
||||
cuda_row_num=batch_size * 2,
|
||||
)
|
||||
|
||||
assert model.cache_weight_mgr.weight.device.type == 'cpu'
|
||||
assert model.cache_weight_mgr.cuda_cached_weight.requires_grad
|
||||
|
|
Loading…
Reference in New Issue