[fx] Add common node in model linearize (#1542)

* [fx] Add common node into linearize

* [fx] Add common node to solver
pull/1544/head
Boyuan Yao 2022-09-05 18:35:05 +08:00 committed by GitHub
parent 964123ae0f
commit 46c6cc79a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 99 additions and 21 deletions

View File

@ -114,12 +114,57 @@ def _discretize(mem_unit, values):
return [math.ceil(value / mem_unit) for value in values]
def _construct_chain(node_list: List[List[Node]], data: torch.Tensor, mem_unit: int) -> Chain:
def _compute_size(obj: torch.Tensor) -> int:
return obj.numel() * obj.element_size()
def _compute_output_size(node: List[Node]) -> int:
"""Compute the output size of a node
Args:
node (List[Node]): node, list of torch.fx.Node
Returns:
int: output size
"""
return node[-1].meta['tensor_meta'].numel * torch.tensor([],
dtype=node[-1].meta['tensor_meta'].dtype).element_size()
def _get_inplace(node: Node) -> bool:
"""Get the inplace argument from torch.fx.Node
Args:
node (Node): torch.fx.Node
Returns:
bool: indicates whether this op is inplace
"""
is_inplace = False
if node.op == "call_function":
is_inplace = node.kwargs.get("inplace", False)
elif node.op == "call_module":
is_inplace = getattr(node.graph.owning_module.get_submodule(node.target), "inplace", False)
return is_inplace
def _construct_chain(node_list: List[List[Node]], data, mem_unit: int) -> Chain:
fwd_time = []
bwd_time = []
xbar_sizes = [data.numel() * data.element_size()]
x_sizes = [data.numel() * data.element_size()]
if isinstance(data, torch.Tensor):
xbar_sizes = [_compute_size(data)]
x_sizes = [_compute_size(data)]
elif isinstance(data, list) or isinstance(data, tuple):
xbar_sizes = [_compute_size(obj) for obj in data]
x_sizes = [_compute_size(obj) for obj in data]
elif isinstance(data, dict):
xbar_sizes = [_compute_size(obj) for obj in data.values()]
x_sizes = [_compute_size(obj) for obj in data.values()]
# currently we can't get the temp memory needed in fwd and bwd
tmp_fwd = [0] * len(node_list)
@ -129,16 +174,27 @@ def _construct_chain(node_list: List[List[Node]], data: torch.Tensor, mem_unit:
fwd_time.append(0)
bwd_time.append(0)
xbar_sizes.append(0)
x_sizes.append(node[-1].meta['tensor_meta'].numel *
torch.tensor([], dtype=node[-1].meta['tensor_meta'].dtype).element_size())
x_sizes.append(_compute_output_size(node))
_check_inplace_flag = 1
for n in node:
fwd_time[-1] += max(n.__flops__, 1)
# currently we haven't patched the backward flops count
bwd_time[-1] += max(n.__flops__ * 2, 2)
xbar_sizes[-1] += n.__activation__
# we need to clear the xbar of previous node as there is
# one op in the current node that use the previous node's
# output but applies inplace operation on it
# NOTE: This process should be done only once as the previous
# node will only have one output
if _check_inplace_flag:
for par in n._input_nodes:
if par not in node and _get_inplace(n):
xbar_sizes[-2] -= x_sizes[-2]
_check_inplace_flag = 0
xbar_sizes[-1] = max(xbar_sizes[-1], x_sizes[-1])
bwd_time.append(0)
@ -186,20 +242,25 @@ def _annotate_from_sequence(sequence: Sequence, node_list: List[List[Node]]) ->
ckpt_region.append(idx)
def solver_rotor(gm: ColoGraphModule, data: torch.Tensor, mem_limit: int, mem_slots: int = 500) -> ColoGraphModule:
def solver_rotor(gm: ColoGraphModule,
data,
mem_limit: int,
mem_slots: int = 500,
cnode: List[str] = None) -> ColoGraphModule:
"""solver that automatically find activation checkpoint in rotor's manner
Args:
gm (ColoGraphModule): ColoGraphModule generated by tracing model.
data (torch.Tensor): input data.
mem_limit (int): memory budget in Byte.
mem_slots (int, optional): Number of slots for discretizing memory budget. Defaults to 500.
mem_slots (int, optional): number of slots for discretizing memory budget. Defaults to 500.
cnode (List[Node], optional): common node list for linearize. Defaults to None.
Returns:
ColoGraphModule: annotated ColoGraphModuled with __sequence__ attribute
"""
node_list = linearize(gm)
node_list = linearize(gm, cnode)
mem_unit = mem_limit // mem_slots
MetaInfoProp(gm).run(data)
chain: Chain = _construct_chain(node_list, data, mem_unit)

View File

@ -2,11 +2,12 @@ from typing import List
from torch.fx import GraphModule, Node
def linearize(gm: GraphModule) -> List[List[Node]]:
def linearize(gm: GraphModule, cnode: List[str] = None) -> List[List[Node]]:
"""Linearizing the graph
Args:
gm (GraphModule): GraphModule derived by tracing
cnode (List[str], optional): common node List, should be the subset of input. Default to None.
Returns:
List[List[Node]]: List of list, each inside list of Node presents
@ -22,23 +23,39 @@ def linearize(gm: GraphModule) -> List[List[Node]]:
return not sum([v for _, v in deps.items()])
# make sure that item in cnode is valid
if cnode:
for name in cnode:
try:
assert next(node for node in gm.graph.nodes if node.name == name).op == "placeholder", \
f"common node {name} is not an input of the model"
except StopIteration:
raise ValueError(f"common node name {name} not in graph")
else:
cnode = []
deps = {}
linearized_nodes = []
region = []
for n in gm.graph.nodes:
for n_par in n._input_nodes:
deps[n_par] -= 1
region.append(n)
if n.op != "placeholder" and n.op != "output":
for n_par in n._input_nodes:
if n_par.op != "placeholder" and n_par.name not in cnode:
deps[n_par] -= 1
region.append(n)
# if the node could free all dependencies in graph
# we could begin a new node
if _is_sink():
linearized_nodes.append(region)
region = []
# if the node could free all dependencies in graph
# we could begin a new node
if _is_sink():
linearized_nodes.append(region)
region = []
deps[n] = len(n.users)
# propagate common node attr if possible
if len(n._input_nodes) == len([node for node in n._input_nodes if node.name in cnode]):
cnode.append(n.name)
else:
deps[n] = len([user for user in n.users if user.op != "output"])
# Remove input
linearized_nodes = linearized_nodes[1:-1]
return linearized_nodes