[gemini] gemini support tensor parallelism. (#4942)

* [colossalai]fix typo

* [inference] Add smmoothquant for llama (#4904)

* [inference] add int8 rotary embedding kernel for smoothquant (#4843)

* [inference] add smoothquant llama attention (#4850)

* add smoothquant llama attention

* remove uselss code

* remove useless code

* fix import error

* rename file name

* [inference] add silu linear fusion for smoothquant llama mlp  (#4853)

* add silu linear

* update skip condition

* catch smoothquant cuda lib exception

* prcocess exception for tests

* [inference] add llama mlp for smoothquant (#4854)

* add llama mlp for smoothquant

* fix down out scale

* remove duplicate lines

* add llama mlp check

* delete useless code

* [inference] add smoothquant llama (#4861)

* add smoothquant llama

* fix attention accuracy

* fix accuracy

* add kv cache and save pretrained

* refactor example

* delete smooth

* refactor code

* [inference] add smooth function and delete useless code for smoothquant (#4895)

* add smooth function and delete useless code

* update datasets

* remove duplicate import

* delete useless file

* refactor codes (#4902)

* rafactor code

* add license

* add torch-int and smoothquant license

* Update flash_attention_patch.py

To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer.
https://github.com/huggingface/transformers/pull/25598

* [kernel] support pure fp16 for cpu adam and update gemini optim tests (#4921)

* [kernel] support pure fp16 for cpu adam (#4896)

* [kernel] fix cpu adam kernel for pure fp16 and update tests (#4919)

* [kernel] fix cpu adam

* [test] update gemini optim test

* [format] applied code formatting on changed files in pull request 4908 (#4918)

Co-authored-by: github-actions <github-actions@github.com>

* [gemini] support gradient accumulation (#4869)

* add test

* fix no_sync bug in low level zero plugin

* fix test

* add argument for grad accum

* add grad accum in backward hook for gemini

* finish implementation, rewrite tests

* fix test

* skip stuck model in low level zero test

* update doc

* optimize communication & fix gradient checkpoint

* modify doc

* cleaning codes

* update cpu adam fp16 case

* [hotfix] fix torch 2.0 compatibility (#4936)

* [hotfix] fix launch

* [test] fix test gemini optim

* [shardformer] fix vit

* [test] add no master test for low level zero plugin (#4934)

* [format] applied code formatting on changed files in pull request 4820 (#4886)

Co-authored-by: github-actions <github-actions@github.com>

* [nfc] fix some typo with colossalai/ docs/ etc. (#4920)

* [Refactor] Integrated some lightllm kernels into token-attention  (#4946)

* add some req for inference

* clean codes

* add codes

* add some lightllm deps

* clean codes

* hello

* delete rms files

* add some comments

* add comments

* add doc

* add lightllm deps

* add lightllm cahtglm2 kernels

* add lightllm cahtglm2 kernels

* replace rotary embedding with lightllm kernel

* add some commnets

* add some comments

* add some comments

* add

* replace fwd kernel att1

* fix a arg

* add

* add

* fix token attention

* add some comments

* clean codes

* modify comments

* fix readme

* fix bug

* fix bug

---------

Co-authored-by: cuiqing.li <lixx336@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>

* [test] merge old components to test to model zoo (#4945)

* [test] add custom models in model zoo

* [test] update legacy test

* [test] update model zoo

* [test] update gemini test

* [test] remove components to test

* [inference] add reference and fix some bugs (#4937)

* add reference and fix some bugs

* update gptq init

---------

Co-authored-by: Xu Kai <xukai16@foxamil.com>

* [Inference]ADD Bench Chatglm2 script (#4963)

* add bench chatglm

* fix bug and make utils

---------

Co-authored-by: CjhHa1 <cjh18671720497outlook.com>

* [Pipeline inference] Combine kvcache with pipeline inference (#4938)

* merge kvcache with pipeline inference and refactor the code structure

* support ppsize > 2

* refactor pipeline code

* do pre-commit

* modify benchmark

* fix bench mark

* polish code

* add docstring and update readme

* refactor the code

* fix some logic bug of ppinfer

* polish readme

* fix typo

* skip infer test

* updated c++17 compiler flags (#4983)

* [Inference] Dynamic Batching Inference, online and offline (#4953)

* [inference] Dynamic Batching for Single and Multiple GPUs (#4831)

* finish batch manager

* 1

* first

* fix

* fix dynamic batching

* llama infer

* finish test

* support different lengths generating

* del prints

* del prints

* fix

* fix bug

---------

Co-authored-by: CjhHa1 <cjh18671720497outlook.com>

* [inference] Async dynamic batching  (#4894)

* finish input and output logic

* add generate

* test forward

* 1

* [inference]Re push async dynamic batching (#4901)

* adapt to ray server

* finish async

* finish test

* del test

---------

Co-authored-by: yuehuayingxueluo <867460659@qq.com>

* Revert "[inference]Re push async dynamic batching (#4901)" (#4905)

This reverts commit fbf3c09e67.

* Revert "[inference] Async dynamic batching  (#4894)"

This reverts commit fced140250.

* Revert "[inference] Async dynamic batching  (#4894)" (#4909)

This reverts commit fced140250.

* Add Ray Distributed Environment Init Scripts

* support DynamicBatchManager base function

* revert _set_tokenizer version

* add driver async generate

* add async test

* fix bugs in test_ray_dist.py

* add get_tokenizer.py

* fix code style

* fix bugs about No module named 'pydantic' in ci test

* fix bugs in ci test

* fix bugs in ci test

* fix bugs in ci test

* [infer]Add Ray Distributed Environment Init Scripts (#4911)

* Revert "[inference] Async dynamic batching  (#4894)"

This reverts commit fced140250.

* Add Ray Distributed Environment Init Scripts

* support DynamicBatchManager base function

* revert _set_tokenizer version

* add driver async generate

* add async test

* fix bugs in test_ray_dist.py

* add get_tokenizer.py

* fix code style

* fix bugs about No module named 'pydantic' in ci test

* fix bugs in ci test

* fix bugs in ci test

* fix bugs in ci test

* support dynamic batch for bloom model and is_running function

* [Inference]Test for new Async engine (#4935)

* infer engine

* infer engine

* test engine

* test engine

* new manager

* change step

* add

* test

* fix

* fix

* finish test

* finish test

* finish test

* finish test

* add license

---------

Co-authored-by: yuehuayingxueluo <867460659@qq.com>

* add assertion for config (#4947)

* [Inference] Finish dynamic batching offline test (#4948)

* test

* fix test

* fix quant

* add default

* fix

* fix some bugs

* fix some bugs

* fix

* fix bug

* fix bugs

* reset param

---------

Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Cuiqing Li <lixx3527@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497outlook.com>

* [Kernels]Updated Triton kernels into 2.1.0 and adding flash-decoding for llama token attention  (#4965)

* adding flash-decoding

* clean

* adding kernel

* adding flash-decoding

* add integration

* add

* adding kernel

* adding kernel

* adding triton 2.1.0 features for inference

* update bloom triton kernel

* remove useless vllm kernels

* clean codes

* fix

* adding files

* fix readme

* update llama flash-decoding

---------

Co-authored-by: cuiqing.li <lixx336@gmail.com>

* fix ColossalEval (#4992)

Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com>

* [doc]Update doc for colossal-inference (#4989)

* update doc

* Update README.md

---------

Co-authored-by: cuiqing.li <lixx336@gmail.com>

* [hotfix] Fix the bug where process groups were not being properly released. (#4940)

* Fix the bug where process groups were not being properly released.

* test

* Revert "test"

This reverts commit 479900c139.

* [hotfix] fix the bug of repeatedly storing param group (#4951)

* [doc] add supported feature diagram for hybrid parallel plugin (#4996)

* [Pipeline Inference] Merge pp with tp (#4993)

* refactor pipeline into new CaiInferEngine

* updata llama modeling forward

* merge tp with pp

* update docstring

* optimize test workflow and example

* fix typo

* add assert and todo

* [release] update version (#4995)

* [release] update version

* [hotfix] fix ci

* [gemini] gemini support tp

[gemini] gemini support tp

[gemini] gemini support tp

[gemini] gemini support tp

[gemini] gemini support tp

* fix

fix

fix

* update checkpointIO

update checkpointIO

update checkpointIO

update checkpointIO

update checkpointIO

update checkpointIO

update checkpointIO

update checkpointIO

update checkpointIO

* support fused layernorm

support fused layernorm

support fused layernorm

* update fusedlayernorm

update fusedlayernorm

update fusedlayernorm

* add sequence parallel to gemini

add sequence parallel to gemini

* fix

* fix comments

fix comments

fix comments

* fix

* fix t5

* clear cache

* fix

* activate ci

* activate ci

* fix

* fix

* fix

* fix

* revert

* modify tp gather method

modify tp gather method

modify tp gather method

modify tp gather method

* fix test

---------

Co-authored-by: Xu Kai <xukai16@foxmail.com>
Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Baizhou Zhang <eddiezhang@pku.edu.cn>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: Cuiqing Li <lixx3527@gmail.com>
Co-authored-by: cuiqing.li <lixx336@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
Co-authored-by: Xu Kai <xukai16@foxamil.com>
Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com>
Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Yuanchen <70520919+chengeharrison@users.noreply.github.com>
Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com>
Co-authored-by: littsk <1214689160@qq.com>
Co-authored-by: ppt0011 <143150326+ppt0011@users.noreply.github.com>
pull/5044/head
flybird11111 2023-11-10 10:15:16 +08:00 committed by GitHub
parent a4489384d5
commit 576a2f7b10
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 390 additions and 67 deletions

View File

@ -5,6 +5,7 @@ from pathlib import Path
from typing import Callable, Iterator, List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
@ -19,8 +20,9 @@ from colossalai.checkpoint_io.utils import (
save_state_dict,
save_state_dict_shards,
)
from colossalai.cluster import DistCoordinator
from colossalai.cluster import DistCoordinator, ProcessGroupMesh
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.utils import get_current_device
from colossalai.zero import GeminiDDP, GeminiOptimizer
from colossalai.zero.gemini.memory_tracer import MemStats
@ -32,7 +34,25 @@ __all__ = ["GeminiPlugin"]
SUPPORTED_PRECISION = ["fp16", "bf16"]
PRECISION_STR_TO_DTYPE = {"fp16": torch.half, "bf16": torch.bfloat16}
DP_AXIS = 0
TP_AXIS = 1
def get_param_info(optim: Optimizer):
# Get a backup of necessary information of parameters for future use, which includes:
# 1. A mapping from integer param_id to param32 shape.
if optim is None:
return {}
param_info = {"id2shape": {}}
start_index = 0
for group in optim.param_groups:
for param_id, param in enumerate(group["params"], start_index):
original_shape = param.shape if isinstance(param, torch.Tensor) else None
param_info["id2shape"][param_id] = original_shape
start_index += len(group["params"])
return param_info
class GeminiCheckpointIO(GeneralCheckpointIO):
def __init__(self) -> None:
super().__init__()
@ -284,6 +304,16 @@ class GeminiPlugin(DPPluginBase):
max_norm (float, optional): max_norm used for `clip_grad_norm`. You should notice that you shall not do
clip_grad_norm by yourself when using ZeRO DDP. The ZeRO optimizer will take care of clip_grad_norm.
norm_type (float, optional): norm_type used for `clip_grad_norm`.
enable_tensor_parallelism (bool, optional): Whether to use tensor parallelism strategy, which is implemented in Shardformer. Default to False.
tp_size (int, optional): If 'enable_tensor_parallelism' is set to true, please configure 'tp_size' which determines the size of the tensor parallel process group. Default to 1.
enable_all_optimization (bool, optional): Whether to switch on all the optimizations supported by Shardformer.
Currently all the optimization methods include fused normalization, flash attention and JIT.
Defaults to False.
enable_fused_normalization (bool, optional): Whether to switch on fused normalization in Shardformer. Defaults to False.
enable_flash_attention (bool, optional): Whether to switch on flash attention in Shardformer. Defaults to False.
enable_jit_fused (bool, optional): Whether to switch on JIT in Shardformer. Default to False.
enable_sequence_parallelism (bool): Whether to turn on sequence parallelism in Shardformer. Defaults to False.
enable_sequence_overlap (bool): Whether to turn on sequence overlap in Shardformer. Defaults to False.
verbose (bool, optional): verbose mode. Debug info including chunk search result will be printed. Defaults to False.
"""
@ -317,6 +347,14 @@ class GeminiPlugin(DPPluginBase):
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0,
enable_tensor_parallelism: bool = False,
tp_size: int = 1,
enable_all_optimization: bool = False,
enable_fused_normalization: bool = False,
enable_flash_attention: bool = False,
enable_sequence_parallelism: bool = False,
enable_jit_fused: bool = False,
enable_sequence_overlap: bool = False,
verbose: bool = False,
) -> None:
super().__init__()
@ -355,8 +393,32 @@ class GeminiPlugin(DPPluginBase):
max_norm=max_norm,
norm_type=norm_type,
)
self.enable_tensor_parallelism = enable_tensor_parallelism
self.enable_all_optimization = enable_all_optimization
self.enable_fused_normalization = enable_fused_normalization
self.enable_flash_attention = enable_flash_attention
self.enable_sequence_parallelism = enable_sequence_parallelism if self.enable_tensor_parallelism else False
self.enable_jit_fused = enable_jit_fused
self.enable_sequence_overlap = enable_sequence_overlap
self.verbose = verbose
self.tp_size = tp_size if self.enable_tensor_parallelism else 1
self.dp_size = dist.get_world_size() // self.tp_size
assert self.dp_size > 1, f"The size of the DP group should be greater than 1. Please reduce the TP group size."
self.pg_mesh = ProcessGroupMesh(self.dp_size, self.tp_size)
self.dp_group = self.pg_mesh.get_group_along_axis(DP_AXIS)
self.tp_group = self.pg_mesh.get_group_along_axis(TP_AXIS)
self.shard_config = ShardConfig(
tensor_parallel_process_group=self.tp_group,
enable_tensor_parallelism=self.enable_tensor_parallelism,
enable_all_optimization=self.enable_all_optimization,
enable_fused_normalization=self.enable_fused_normalization,
enable_flash_attention=self.enable_flash_attention,
enable_jit_fused=self.enable_jit_fused,
enable_sequence_parallelism=self.enable_sequence_parallelism,
enable_sequence_overlap=self.enable_sequence_overlap,
)
def support_no_sync(self) -> bool:
return False
@ -380,6 +442,7 @@ class GeminiPlugin(DPPluginBase):
dataloader: Optional[DataLoader] = None,
lr_scheduler: Optional[LRScheduler] = None,
) -> Tuple[nn.Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]:
optimizer_params_info = get_param_info(optimizer)
if not isinstance(model, ModelWrapper):
# convert model to sync bn
# FIXME(ver217): gemini does not support sync bn
@ -391,11 +454,21 @@ class GeminiPlugin(DPPluginBase):
# model = nn.SyncBatchNorm.convert_sync_batchnorm(model, None)
# wrap the model with Gemini
model = GeminiDDP(model, **self.gemini_config, verbose=self.verbose)
if self.enable_tensor_parallelism:
shardformer = ShardFormer(self.shard_config)
model, _ = shardformer.optimize(model)
model = GeminiDDP(model, **self.gemini_config, process_group=self.dp_group, verbose=self.verbose)
if optimizer is not None and not isinstance(optimizer, OptimizerWrapper):
optimizer = GeminiOptimizer(
optimizer, model, **self.zero_optim_config, **self.optim_kwargs, verbose=self.verbose
optimizer,
model,
**self.zero_optim_config,
**self.optim_kwargs,
tp_group=self.tp_group,
optimizer_params_info=optimizer_params_info,
verbose=self.verbose,
)
return model, optimizer, criterion, dataloader, lr_scheduler

View File

@ -225,3 +225,4 @@ class ProcessGroupMesh:
# no need to cache it explicitly, since it will be cached in `create_group_along_axis`
return self.create_group_along_axis(axis, indices_at_axis, backend=backend)
return self._ranks_to_group[ranks_in_group]

View File

@ -53,7 +53,7 @@ class MatmulWithAsyncCommunication(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce):
ctx.save_for_backward(input_, weight)
ctx.save_for_backward(input_, weight, bias)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_allreduce = async_grad_allreduce
@ -62,13 +62,18 @@ class MatmulWithAsyncCommunication(torch.autograd.Function):
if bias is not None:
output = output + bias
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
input, weight, bias = ctx.saved_tensors
use_bias = ctx.use_bias
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias.
weight = weight.view(weight.shape)
bias = bias.view(bias.shape)
total_input = input
grad_input = grad_output.matmul(weight.T)
grad_output = grad_output.contiguous()
@ -100,7 +105,7 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce):
ctx.save_for_backward(input_, weight)
ctx.save_for_backward(input_, weight, bias)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_allreduce = async_grad_allreduce
@ -109,13 +114,18 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
output = F.linear(input_, weight, bias)
else:
output = F.linear(input_, weight)
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
input, weight, bias = ctx.saved_tensors
use_bias = ctx.use_bias
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
if use_bias:
bias.view(bias.shape)
total_input = input
grad_input = grad_output.matmul(weight)
grad_output = grad_output.contiguous()
@ -152,7 +162,7 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap=True):
ctx.save_for_backward(input_, weight)
ctx.save_for_backward(input_, weight, bias)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_reduce_scatter = async_grad_reduce_scatter
@ -170,12 +180,16 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):
input_, weight = ctx.saved_tensors
input_, weight, bias = ctx.saved_tensors
use_bias = ctx.use_bias
dim = ctx.dim
process_group = ctx.process_group
overlap = ctx.overlap
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm
if use_bias:
bias = bias.view(bias.shape)
if not overlap:
input_parallel = _gather(input_, dim, process_group)
@ -289,7 +303,7 @@ class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap):
ctx.save_for_backward(input_, weight)
ctx.save_for_backward(input_, weight, bias)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_reduce_scatter = async_grad_reduce_scatter
@ -306,12 +320,17 @@ class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):
input_, weight = ctx.saved_tensors
input_, weight, bias = ctx.saved_tensors
use_bias = ctx.use_bias
dim = ctx.dim
process_group = ctx.process_group
overlap = ctx.overlap
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm
weight = weight.view(weight.shape)
if use_bias:
bias = bias.view(bias.shape)
if not overlap:
input_parallel = _gather(input_, dim, process_group)
@ -456,6 +475,29 @@ class _GatherForwardSplitBackward(torch.autograd.Function):
return _split(grad_output, ctx.dim, ctx.process_group), None, None
class HookParameter(torch.autograd.Function):
"""In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm"""
@staticmethod
def forward(ctx, input, weight, bias):
ctx.save_for_backward(weight, bias)
output = input
return output
@staticmethod
def backward(ctx, grad_output):
weight, bias = ctx.saved_tensors
if weight is not None:
weight = weight.view(weight.shape)
if bias is not None:
bias = bias.view(bias.shape)
return grad_output, None, None
def hook_paramter_in_backward(input, weight=None, bias=None):
return HookParameter.apply(input, weight, bias)
def _reduce(input_, process_group):
# skip if only one rank involved
if dist.get_world_size(process_group) == 1:

View File

@ -309,7 +309,8 @@ class VocabParallelEmbedding1D(ParallelModule):
)
# Mask the output embedding.
output_parallel[input_mask, :] = 0.0
embedding_output = output_parallel.clone()
embedding_output[input_mask, :] = 0.0
# Reduce across all the model parallel GPUs.
output = reduce_forward(output_parallel, self.process_group)
output = reduce_forward(embedding_output, self.process_group)
return output

View File

@ -1,15 +1,29 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import warnings
from abc import ABC, abstractmethod
import torch.nn as nn
from colossalai.lazy import LazyInitContext
from ._operation import hook_paramter_in_backward
from .utils import SeqParallelUtils
__all__ = ["FusedLayerNorm", "FusedRMSNorm", "LayerNorm", "RMSNorm", "BaseLayerNorm"]
try:
from apex.contrib.layer_norm.layer_norm import FastLayerNorm
EnableFastLayerNorm = True
except ImportError:
EnableFastLayerNorm = False
try:
from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm
from apex.normalization import FusedRMSNorm as ApexFusedRMSNorm
except ImportError:
warnings.warn(
"Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernel"
)
FAST_LAYERNORM_SUPPORTED_SIZE = [
1024,
1536,
@ -37,6 +51,34 @@ FAST_LAYERNORM_SUPPORTED_SIZE = [
65536,
]
if EnableFastLayerNorm:
class FastLayerNormWithHook(FastLayerNorm):
def __init__(self, hidden_size, eps=0.00001):
super().__init__(hidden_size, eps)
def forward(self, input):
output = super().forward(input)
output = hook_paramter_in_backward(output, self.weight, self.bias)
return output
class FusedLayerNormWithHook(ApexFusedLayerNorm):
def __init__(self, normalized_shape, eps=0.00001, elementwise_affine=True):
super().__init__(normalized_shape, eps, elementwise_affine)
def forward(self, input):
output = super().forward(input)
output = hook_paramter_in_backward(output, self.weight, self.bias)
return output
class FusedRMSNormWithHook(ApexFusedRMSNorm):
def __init__(self, normalized_shape, eps=0.00001, elementwise_affine=True):
super().__init__(normalized_shape, eps, elementwise_affine)
def forward(self, input):
output = super().forward(input)
output = hook_paramter_in_backward(output, self.weight)
return output
class BaseLayerNorm(ABC):
@abstractmethod
@ -161,16 +203,6 @@ class FusedLayerNorm(BaseLayerNorm):
Raises:
AssertionError: If the provided module is not an instance of nn.LayerNorm.
"""
# check if apex is installed
assert isinstance(module, nn.LayerNorm), "Only support conversion from nn.LayerNorm."
try:
pass
except ImportError:
raise ImportError(
"Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernel"
)
LazyInitContext.materialize(module)
# get the attributes of the module
@ -184,18 +216,17 @@ class FusedLayerNorm(BaseLayerNorm):
use_fast_ln = normalized_shape in FAST_LAYERNORM_SUPPORTED_SIZE
if use_fast_ln:
try:
from apex.contrib.layer_norm.layer_norm import FastLayerNorm as ApexFusedLayerNorm
except ImportError:
if EnableFastLayerNorm:
ApexFusedLayerNorm = FastLayerNormWithHook
else:
# fall back to the normal fused layernorm is not built
from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm
ApexFusedLayerNorm = FusedLayerNormWithHook
else:
from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm
ApexFusedLayerNorm = FusedLayerNormWithHook
layernorm = (
ApexFusedLayerNorm(normalized_shape, eps=eps, elementwise_affine=elementwise_affine).to(dtype).to(device)
)
layernorm.weight = module.weight
layernorm.bias = module.bias
@ -213,7 +244,6 @@ class FusedRMSNorm(BaseLayerNorm):
"""
This is a wrapper around the apex fused rms norm implementation. It is meant to be used only with the from_native_module interface.
"""
def __init__(self) -> None:
raise NotImplementedError(
"FusedRMSNorm is not implemented as a physical class. "
@ -252,7 +282,7 @@ class FusedRMSNorm(BaseLayerNorm):
eps = module.eps
elementwise_affine = module.elementwise_affine
rmsnorm = ApexFusedRMSNorm(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine)
rmsnorm = FusedRMSNormWithHook(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine)
rmsnorm.weight = module.weight

View File

@ -719,7 +719,7 @@ def get_bloom_flash_attention_forward(enabel_jit_fused=False):
):
fused_qkv = self.query_key_value(hidden_states)
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
batch_size, tgt_len, _ = query_layer.size()
batch_size, tgt_len, _, _ = query_layer.size()
_, kv_length, _, _ = key_layer.size()
@ -755,6 +755,7 @@ def get_bloom_flash_attention_forward(enabel_jit_fused=False):
attention_numerical_mask = torch.masked_fill(
attention_numerical_mask, attention_mask, torch.finfo(torch.float32).min
)
attention_numerical_mask = attention_numerical_mask.to(query_layer.dtype)
context_layer = me_attention(
query_layer,

View File

@ -183,14 +183,6 @@ class T5BasePolicy(Policy):
policy=policy,
target_key=T5LayerFF,
)
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="layer_norm",
target_module=norm_cls,
),
policy=policy,
target_key=T5LayerFF,
)
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(suffix="layer_norm", target_module=norm_cls),
policy=policy,

View File

@ -2,7 +2,9 @@ from .api import (
compute_global_numel,
customized_distributed_tensor_to_param,
distribute_tensor,
init_as_dtensor,
distribute_tensor_with_customization,
init_tensor_as_customization_distributed,
get_device_mesh,
get_global_shape,
get_layout,
@ -23,6 +25,7 @@ from .sharding_spec import ShardingSpec
__all__ = [
"is_distributed_tensor",
"distribute_tensor",
"init_as_dtensor",
"to_global",
"is_sharded",
"shard_rowwise",
@ -36,6 +39,7 @@ __all__ = [
"get_layout",
"is_customized_distributed_tensor",
"distribute_tensor_with_customization",
"init_tensor_as_customization_distributed",
"to_global_for_customized_distributed_tensor",
"customized_distributed_tensor_to_param",
"Layout",

View File

@ -128,6 +128,17 @@ def distribute_tensor(tensor: torch.Tensor, device_mesh: DeviceMesh, sharding_sp
return sharded_tensor
def init_as_dtensor(tensor: torch.Tensor, device_mesh: DeviceMesh, sharding_spec: ShardingSpec, global_shape: torch.Size) -> torch.Tensor:
assert not is_distributed_tensor(tensor), "The input tensor is already a distributed tensor."
dist_layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec, global_shape=global_shape)
# shard tensor
tensor.dist_layout = dist_layout
# hack some tensor methods
_hijack_detach_and_clone(tensor)
return tensor
def redistribute(dtensor: torch.Tensor, device_mesh: DeviceMesh, sharding_spec: ShardingSpec) -> None:
"""
@ -420,6 +431,54 @@ def distribute_tensor_with_customization(tensor: torch.Tensor, shard_fn, gather_
return sharded_tensor
def init_tensor_as_customization_distributed(tensor: torch.Tensor, shard_fn, gather_fn: callable):
"""
Distribute the given tensor with the given shard_fn and gather_fn.
Example:
```python
# define shard and gather functions
def shard_fn(tensor):
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
return tensor.chunk(world_size, dim=0)[rank]
def gather_fn(tensor):
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
shard_list = [torch.zeros_like(tensor) for _ in range(world_size)]
torch.distributed.all_gather(shard_list, tensor)
return torch.cat(shard_list, dim=0)
# create a distributed tensor
tensor = torch.rand(4, 4)
dtensor = init_tensor_as_customization_distributed(tensor, shard_fn, gather_fn)
```
Args:
tensor (torch.Tensor): The tensor to be distributed.
shard_fn (callable): The function to shard the tensor.
gather_fn (callable): The function to gather the tensor.
Returns:
torch.Tensor: The distributed tensor.
"""
assert callable(shard_fn), "The shard_fn must be callable."
assert callable(gather_fn), "The gather_fn must be callable."
assert not is_distributed_tensor(tensor), "The input tensor is already a distributed tensor."
# set the shard_fn and gather_fn as attributes of the distributed tensor
tensor.shard_fn = shard_fn
tensor.gather_fn = gather_fn
# set the shard_fn and gather_fn as attributes of the distributed tensor
_hijack_detach_and_clone_for_customized_distributed_tensor(tensor)
return tensor
def to_global_for_customized_distributed_tensor(dtensor: torch.Tensor) -> torch.Tensor:
"""
Gather the given tensor to the global tensor.

View File

@ -17,6 +17,7 @@ from colossalai.logging import get_dist_logger
from colossalai.tensor.colo_parameter import ColoParameter
from colossalai.tensor.param_op_hook import ColoParamOpHookManager
from colossalai.utils import _cast_float, free_storage, get_current_device, is_ddp_ignored
from colossalai.checkpoint_io.utils import gather_distributed_param
from .chunk import Chunk, ChunkManager, TensorState, init_chunk_manager
from .gemini_hook import GeminiZeROHook
@ -24,6 +25,18 @@ from .gemini_mgr import GeminiManager
from .memory_tracer import MemStats, OrderedParamGenerator
from .utils import get_temp_total_chunk_on_cuda
from colossalai.tensor.d_tensor import (
distribute_tensor,
distribute_tensor_with_customization,
init_tensor_as_customization_distributed,
get_device_mesh,
get_sharding_spec,
is_customized_distributed_tensor,
is_distributed_tensor,
get_global_shape,
init_as_dtensor
)
try:
from torch.nn.modules.module import _EXTRA_STATE_KEY_SUFFIX, _IncompatibleKeys
except ImportError:
@ -318,9 +331,7 @@ class GeminiDDP(ModelWrapper):
self._post_backward()
def backward_by_grad(self, tensor, grad):
with self.param_op_hook.switch_to_backward(), ColoParamOpHookManager.use_hooks(self.param_op_hook):
torch.autograd.backward(tensor, grad)
self._post_backward()
raise RuntimeError("Gemini is not compatible with pipeline. backward_by_grad shoudn't be called in Gemini.")
def grad_handle(self, p, grad):
setattr(p, "_gemini_reduced", True)
@ -431,7 +442,18 @@ class GeminiDDP(ModelWrapper):
record_tensor = torch.empty([0])
record_flag = (not only_rank_0) | (dist.get_rank(chunk.torch_pg) == 0)
if record_flag:
record_tensor = temp_chunk[tensor_info.offset : tensor_info.end].view(tensor.shape).cpu()
record_tensor = temp_chunk[tensor_info.offset : tensor_info.end].view(tensor.shape).to(tensor.device)
if is_distributed_tensor(tensor):
global_shape = get_global_shape(tensor)
device_mesh = get_device_mesh(tensor)
shard_spec = get_sharding_spec(tensor)
record_tensor = init_as_dtensor(record_tensor,
device_mesh=device_mesh,
sharding_spec=shard_spec,
global_shape = global_shape)
elif is_customized_distributed_tensor(tensor):
init_tensor_as_customization_distributed(record_tensor, shard_fn=tensor.shard_fn, gather_fn=tensor.gather_fn)
record_tensor = gather_distributed_param(record_tensor, keep_vars=False).cpu()
assert tensor not in chunk_to_save_data
chunk_to_save_data[tensor] = record_tensor
@ -606,10 +628,16 @@ class GeminiDDP(ModelWrapper):
local_name_params = itertools.chain(self.named_parameters(), persistent_buffers.items())
local_state = {k: v for k, v in local_name_params if v is not None}
def load(param_name, dest_tensor, copy_func):
def load(param_name, dest_tensor, copy_func, source_device_mesh=None, source_sharding_spec=None, shard_fn=None, gather_fn=None):
state_key = prefix + param_name
if state_key in state_dict:
input_param = state_dict[state_key]
if source_device_mesh is not None and source_sharding_spec is not None:
input_param = distribute_tensor(input_param, source_device_mesh, source_sharding_spec)
elif shard_fn is not None and gather_fn is not None:
input_param = distribute_tensor_with_customization(input_param, shard_fn=shard_fn, gather_fn=gather_fn)
# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
if len(dest_tensor.shape) == 0 and len(input_param.shape) == 1:
input_param = input_param[0]
@ -653,9 +681,19 @@ class GeminiDDP(ModelWrapper):
temp_chunk = get_temp_total_chunk_on_cuda(chunk, self.mixed_precision)
for tensor, tensor_info in chunk.tensors_info.items():
source_device_mesh, source_sharding_spec, shard_fn, gather_fn = None, None, None, None
if is_distributed_tensor(tensor):
# shard the input param
source_device_mesh = get_device_mesh(tensor)
source_sharding_spec = get_sharding_spec(tensor)
elif is_customized_distributed_tensor(tensor):
shard_fn = tensor.shard_fn
gather_fn = tensor.gather_fn
parameter_name = fp32_to_name[tensor] if self.reuse_fp16_chunk else self.param2name[tensor]
parameter_slice = temp_chunk[tensor_info.offset : tensor_info.end]
load(parameter_name, tensor, partial(load_parameter, parameter_slice))
load(parameter_name, tensor, partial(load_parameter, parameter_slice), source_device_mesh, source_sharding_spec, shard_fn, gather_fn)
if chunk.is_gathered:
chunk.cuda_global_chunk.copy_(temp_chunk)
@ -724,7 +762,8 @@ class GeminiDDP(ModelWrapper):
if self.master_weights:
# create a fp32 parameter
fp32_p = p.data.float()
fp32_p = p.clone()
fp32_p.data = fp32_p.data.float()
self.chunk_manager.register_tensor(
tensor=fp32_p,
group_type="fp32_param",

View File

@ -9,6 +9,7 @@ import torch.distributed as dist
from packaging.version import Version
from torch.nn import Parameter
from torch.optim import Optimizer
from torch.distributed import ProcessGroup
from colossalai.amp.naive_amp.mixed_precision_mixin import BF16MixedPrecisionMixin, FP16MixedPrecisionMixin
from colossalai.checkpoint_io.utils import StateDictSharder
@ -19,6 +20,18 @@ from colossalai.utils import disposable, get_current_device, is_ddp_ignored
from .chunk import Chunk, ChunkManager
from .gemini_ddp import GeminiDDP
from colossalai.checkpoint_io.utils import gather_distributed_param
from colossalai.tensor.d_tensor import (
distribute_tensor,
distribute_tensor_with_customization,
init_tensor_as_customization_distributed,
get_device_mesh,
get_sharding_spec,
is_customized_distributed_tensor,
is_distributed_tensor,
get_global_shape,
init_as_dtensor
)
__all__ = ["GeminiOptimizer", "GeminiAdamOptimizer"]
@ -93,6 +106,8 @@ class GeminiOptimizer(OptimizerWrapper):
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0,
tp_group: ProcessGroup = None,
optimizer_params_info=None,
verbose: bool = False,
**defaults: Any,
):
@ -109,6 +124,10 @@ class GeminiOptimizer(OptimizerWrapper):
self.chunk16_set: Set[Chunk] = set()
self.clipping_flag = max_norm > 0.0
self.max_norm = max_norm
self.tp_group = tp_group
self.optimizer_params_info = optimizer_params_info
self.tp_size = dist.get_world_size(tp_group) if tp_group is not None else 1
self.tp_rank = dist.get_rank(tp_group) if tp_group is not None else 0
self.verbose = verbose
self.param_groups_backup = list()
@ -406,8 +425,8 @@ class GeminiOptimizer(OptimizerWrapper):
param = self.id_to_real_params[param_id]
fake_param = self.id_to_fake_params.get(param_id, None)
chunk = self.chunk_manager.get_chunk(param)
process_group = chunk.torch_pg
rank = dist.get_rank(process_group)
dp_group = chunk.torch_pg
rank = dist.get_rank(dp_group)
master_rank = 0
collected_states = {}
@ -415,9 +434,9 @@ class GeminiOptimizer(OptimizerWrapper):
local_state_names = None
if fake_param is not None:
local_state_names = list(self.optim.state[fake_param].keys())
gathered_state_names = [None for _ in range(dist.get_world_size(process_group))]
gathered_state_names = [None for _ in range(dist.get_world_size(dp_group))]
dist.barrier()
dist.all_gather_object(gathered_state_names, local_state_names)
dist.all_gather_object(gathered_state_names, local_state_names, dp_group)
state_names = None
for names in gathered_state_names:
if names is not None:
@ -436,6 +455,13 @@ class GeminiOptimizer(OptimizerWrapper):
# Every rank is collector when only_rank_0 is False.
is_collector = (rank == master_rank) or (not only_rank_0)
# get tensor parallelism information
is_dtensor = is_distributed_tensor(param)
is_customized_distributed = is_customized_distributed_tensor(param)
shard_spec = get_sharding_spec(param) if is_dtensor else None
device_mesh = get_device_mesh(param) if is_dtensor else None
global_shape = self.optimizer_params_info["id2shape"][param_id]
# If the chunk is kept gathered,
# the parameteres are treated the same as that of those in strict DDP during training.
# So states can be directly fetched from current device.
@ -451,7 +477,18 @@ class GeminiOptimizer(OptimizerWrapper):
).cpu()
else:
state_tensor = states[state_name].detach().clone().to(torch.float32).cpu()
collected_states[state_name] = torch.reshape(state_tensor, param.shape)
if is_dtensor:
state_tensor = torch.reshape(state_tensor, param.shape).to(param.device)
state_tensor = init_as_dtensor(state_tensor,
device_mesh=device_mesh,
sharding_spec=shard_spec,
global_shape = global_shape)
elif is_customized_distributed:
state_tensor = torch.reshape(state_tensor, param.shape).to(param.device)
init_tensor_as_customization_distributed(state_tensor, shard_fn=param.shard_fn, gather_fn=param.gather_fn)
state_tensor = gather_distributed_param(state_tensor, keep_vars=False).cpu()
collected_states[state_name] = state_tensor.reshape(global_shape)
return collected_states
# Check whether the param with given id is managed by current process.
@ -473,7 +510,7 @@ class GeminiOptimizer(OptimizerWrapper):
_, shard_offset, shard_size = self.get_offsets(param_id)
# Collectors gather state shards through all_gathering.
gathered_state_shards = [None for _ in range(dist.get_world_size(process_group))]
gathered_state_shards = [None for _ in range(dist.get_world_size(dp_group))]
dist.barrier()
dist.all_gather_object(gathered_state_shards, [compacted_states, shard_offset, shard_size])
@ -494,6 +531,16 @@ class GeminiOptimizer(OptimizerWrapper):
for state_name, state_tensor in collected_states.items():
if state_tensor.numel() == param.numel():
collected_states[state_name] = torch.reshape(state_tensor, param.shape)
if is_dtensor:
state_tensor = state_tensor.to(param.device)
state_tensor = init_as_dtensor(state_tensor,
sharding_spec=shard_spec,
device_mesh=device_mesh,
global_shape=global_shape)
elif is_customized_distributed:
state_tensor = state_tensor.to(param.device)
init_tensor_as_customization_distributed(state_tensor, shard_fn=param.shard_fn, gather_fn=param.gather_fn)
state_tensor = gather_distributed_param(state_tensor, keep_vars=False).cpu()
return collected_states
@ -658,6 +705,14 @@ class GeminiOptimizer(OptimizerWrapper):
ret_val = torch.zeros(
state_end - state_start, dtype=torch.float32, device=param.device, requires_grad=False
)
if is_dtensor:
value = torch.reshape(value, global_shape)
value = distribute_tensor(value, sharding_spec=shard_spec, device_mesh=device_mesh)
elif is_customized_distributed:
value = torch.reshape(value, global_shape)
value = distribute_tensor_with_customization(value, real_param.shard_fn, real_param.gather_fn)
ret_val.copy_(value.flatten()[state_start:state_end])
return ret_val
@ -668,6 +723,15 @@ class GeminiOptimizer(OptimizerWrapper):
# Copy states assigned to param (and cast tensors to appropriate types).
updated_states = dict()
# get tensor parallelism information
real_param = self.id_to_real_params[param_id]
is_dtensor = is_distributed_tensor(real_param)
is_customized_distributed = is_customized_distributed_tensor(real_param)
shard_spec = get_sharding_spec(real_param) if is_dtensor else None
device_mesh = get_device_mesh(real_param) if is_dtensor else None
global_shape = self.optimizer_params_info["id2shape"][param_id]
for k, v in saved_states.items():
updated_states[k] = cast(fake_param, state_range, v, k)
del v # clean loaded states

View File

@ -10,18 +10,21 @@ from colossalai.booster.plugin import GeminiPlugin
from colossalai.fx import is_compatible_with_meta
from colossalai.lazy.lazy_init import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.colo_parameter import ColoParameter
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn, enable_tensor_parallelism) -> Optional[str]:
try:
if init_method == "lazy":
ctx = LazyInitContext()
else:
ctx = nullcontext()
plugin = GeminiPlugin(max_norm=1.0, initial_scale=2**5)
enable_all_optimization = True if enable_tensor_parallelism else False
plugin = GeminiPlugin(max_norm=1.0, initial_scale=2**5, enable_tensor_parallelism=enable_tensor_parallelism, enable_all_optimization=enable_all_optimization)
booster = Booster(plugin=plugin)
with ctx:
model = model_fn()
@ -46,6 +49,8 @@ def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[
booster.backward(loss, optimizer)
optimizer.step()
except NotImplementedError:
print(f"Tensor Parallelism policy for {model.__class__} is not implemented yet\n.")
except Exception as e:
# raise e
return repr(e)
@ -57,7 +62,8 @@ def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[
@parameterize("subset", ["torchvision", "transformers", "diffusers"])
@parameterize("init_method", ["none"])
def check_gemini_plugin(subset: str, init_method: str = "none", early_stop: bool = True):
@parameterize("enable_tensor_parallelism", [True, False])
def check_gemini_plugin(subset: str, init_method: str = "none", enable_tensor_parallelism: bool = True, early_stop: bool = True):
"""check gemini plugin over model zoo
Args:
@ -116,7 +122,12 @@ def check_gemini_plugin(subset: str, init_method: str = "none", early_stop: bool
"torchvision_efficientnet_v2_s",
]:
continue
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn)
# TODO debug blip2 when using tp, something wrong with shift_logits's shape
if "transformers_blip2" in name:
enable_tensor_parallelism = False
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn, enable_tensor_parallelism)
torch.cuda.empty_cache()
if err is None:
passed_models.append(name)

View File

@ -37,17 +37,20 @@ OPTIM_PLACEMENT_CONFIGS = [
@parameterize("placement_config", MODEL_PLACEMENT_CONFIGS)
@parameterize("model_name", ["transformers_bert_for_sequence_classification"])
@parameterize("use_safetensors", [False, True])
def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool):
@parameterize("enable_tensor_parallelism", [True, False])
@parameterize("tp_size", [2])
def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool, enable_tensor_parallelism: bool, tp_size: int):
from transformers import BertForSequenceClassification
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
bert_model = model_fn()
enable_all_optimization = True if enable_tensor_parallelism else False
with shared_tempdir() as tempdir:
pretrained_path = os.path.join(tempdir, "pretrained")
bert_model.config.save_pretrained(save_directory=pretrained_path)
plugin = GeminiPlugin(**placement_config)
plugin = GeminiPlugin(**placement_config, enable_tensor_parallelism=enable_tensor_parallelism, tp_size=tp_size, enable_all_optimization=enable_all_optimization)
booster = Booster(plugin=plugin)
bert_model, _, _, _, _ = booster.boost(bert_model)
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
@ -63,13 +66,16 @@ def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: b
@clear_cache_before_run()
@parameterize("placement_config", OPTIM_PLACEMENT_CONFIGS)
@parameterize("shard", [False, True])
@parameterize("shard", [True, False])
@parameterize("model_name", ["transformers_gpt"])
@parameterize("size_per_shard", [32])
def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int):
@parameterize("enable_tensor_parallelism", [True, False])
@parameterize("tp_size", [2])
def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int, enable_tensor_parallelism: bool, tp_size: int):
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean()
plugin = GeminiPlugin(**placement_config, precision="fp16", initial_scale=(2**14))
enable_all_optimization = True if enable_tensor_parallelism else False
plugin = GeminiPlugin(**placement_config, precision="fp16", initial_scale=(2**14), enable_tensor_parallelism=enable_tensor_parallelism, tp_size=tp_size, enable_all_optimization=enable_all_optimization)
booster = Booster(plugin=plugin)
model = model_fn()
@ -148,7 +154,7 @@ def run_dist(rank, world_size, port):
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize("world_size", [4])
@rerun_if_address_is_in_use()
def test_gemini_ckpIO(world_size):
spawn(run_dist, world_size)