|
|
|
@ -1,6 +1,7 @@
|
|
|
|
|
import time |
|
|
|
|
from typing import List |
|
|
|
|
import asyncio |
|
|
|
|
from typing import List |
|
|
|
|
|
|
|
|
|
from transformers import AutoTokenizer |
|
|
|
|
|
|
|
|
|
from .dynamic_batching.infer_batch import InferBatch |
|
|
|
|
from .dynamic_batching.io_struct import Batch, Req |
|
|
|
@ -9,9 +10,9 @@ from .dynamic_batching.sampling_params import SamplingParams
|
|
|
|
|
from .dynamic_batching.stats import Stats |
|
|
|
|
from .tensor_parallel import TPInferEngine |
|
|
|
|
|
|
|
|
|
from transformers import AutoTokenizer |
|
|
|
|
_FAST_LLAMA_TOKENIZER = "hf-internal-testing/llama-tokenizer" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DynamicBatchManager: |
|
|
|
|
def __init__( |
|
|
|
|
self, |
|
|
|
@ -19,6 +20,7 @@ class DynamicBatchManager:
|
|
|
|
|
max_total_token_num, |
|
|
|
|
batch_max_tokens, |
|
|
|
|
eos_id, |
|
|
|
|
model, |
|
|
|
|
log_stats=True, |
|
|
|
|
log_stats_interval=10, |
|
|
|
|
running_batch: Batch = None, |
|
|
|
@ -30,6 +32,7 @@ class DynamicBatchManager:
|
|
|
|
|
batch_max_tokens : max tokens of one batch, default to (max input + output len) * num_requests |
|
|
|
|
running_max_req_size : max request size of running batch, equals to MAX_BATCH_SIZE of tp engine |
|
|
|
|
eos_id : The end token of a seq |
|
|
|
|
model: the model weight dir path, the app will load config, weights and tokenizer from this dir |
|
|
|
|
log_stats : whether to log stats |
|
|
|
|
log_stats_interval : log stats interval |
|
|
|
|
running_batch : running batch |
|
|
|
@ -45,32 +48,32 @@ class DynamicBatchManager:
|
|
|
|
|
self.eos_id = eos_id |
|
|
|
|
self.has_wait_tokens = 0 |
|
|
|
|
self.max_wait_tokens = 10 |
|
|
|
|
|
|
|
|
|
self.model = model |
|
|
|
|
|
|
|
|
|
self.stats_tool = Stats(log_stats, log_stats_interval) |
|
|
|
|
self.mem_usage_interval = log_stats_interval * 2 |
|
|
|
|
self._set_tokenizer(tokenizer_name=self.model) |
|
|
|
|
|
|
|
|
|
def add_req(self, prompt_ids: List[int], sampling_params: SamplingParams, request_id: str): |
|
|
|
|
async def add_req(self, request_id, prompt_ids: List[int], sampling_params: SamplingParams, prompts: str = ""): |
|
|
|
|
""" |
|
|
|
|
Add new request to req queue, during initialization all requests are held in waiting list. |
|
|
|
|
""" |
|
|
|
|
req = Req(request_id, prompt_ids, sampling_params) |
|
|
|
|
req = Req(request_id, prompt_ids, sampling_params, prompts) |
|
|
|
|
self.req_queue.append(req) |
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
def add_input(self, request_id, sampling_params, input_ids): |
|
|
|
|
async def add_input(self, request_id, sampling_params, prompts): |
|
|
|
|
""" |
|
|
|
|
Encode and Add new input to req queue. support one sequence input for now. |
|
|
|
|
""" |
|
|
|
|
prompt_ids = self.tokenizer.encode(input_ids) |
|
|
|
|
prompt_ids = self.tokenizer.encode(prompts) |
|
|
|
|
prompt_len = len(prompt_ids) |
|
|
|
|
if prompt_len > self.engine.max_input_len: |
|
|
|
|
raise ValueError( |
|
|
|
|
f"the input prompt token len {prompt_len} is too long > {self.engine.max_input_len}" |
|
|
|
|
) |
|
|
|
|
raise ValueError(f"the input prompt token len {prompt_len} is too long > {self.engine.max_input_len}") |
|
|
|
|
sampling_params.stop_sentences_to_token_ids(self.tokenizer) |
|
|
|
|
self.add_req(prompt_ids, sampling_params, request_id) |
|
|
|
|
self.add_req(request_id, prompt_ids, sampling_params, prompts) |
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def abort(self, request_id): |
|
|
|
|
if self.running_batch is not None: |
|
|
|
|
for req in self.running_batch.reqs: |
|
|
|
@ -88,10 +91,15 @@ class DynamicBatchManager:
|
|
|
|
|
The main loop for a dynamic batching process. |
|
|
|
|
""" |
|
|
|
|
counter_count = 0 |
|
|
|
|
#self.running_batch is not None or self.req_queue.waiting_req_list |
|
|
|
|
# self.running_batch is not None or self.req_queue.waiting_req_list |
|
|
|
|
while True: |
|
|
|
|
async for item in self._step(): |
|
|
|
|
yield item |
|
|
|
|
if self.running_batch is not None or self.req_queue.waiting_req_list: |
|
|
|
|
async for result in self._step(): |
|
|
|
|
yield result |
|
|
|
|
else: |
|
|
|
|
# need to wait for new requests |
|
|
|
|
await asyncio.sleep(0.1) |
|
|
|
|
continue |
|
|
|
|
counter_count += 1 |
|
|
|
|
if self.running_batch is not None: |
|
|
|
|
if counter_count % self.mem_usage_interval == 0: |
|
|
|
@ -103,30 +111,33 @@ class DynamicBatchManager:
|
|
|
|
|
) |
|
|
|
|
self.stats_tool.print_stats() |
|
|
|
|
|
|
|
|
|
if self.running_batch is None: |
|
|
|
|
time.sleep(0.1) # 10ms |
|
|
|
|
|
|
|
|
|
def _set_tokenizer(self, tokenizer=None, tokenizer_name: str = "", trust_remote_code: bool = False, use_fast:bool = True,): |
|
|
|
|
def _set_tokenizer( |
|
|
|
|
self, tokenizer=None, tokenizer_name: str = "", trust_remote_code: bool = False, use_fast: bool = True |
|
|
|
|
): |
|
|
|
|
if tokenizer is not None: |
|
|
|
|
self.tokenizer = tokenizer |
|
|
|
|
self.tokenizer = tokenizer |
|
|
|
|
else: |
|
|
|
|
if "llama" in tokenizer_name.lower() and use_fast == True: |
|
|
|
|
print( |
|
|
|
|
"For some LLaMA-based models, initializing the fast tokenizer may " |
|
|
|
|
"take a long time. To eliminate the initialization time, consider " |
|
|
|
|
f"using '{_FAST_LLAMA_TOKENIZER}' instead of the original " |
|
|
|
|
"tokenizer. This is done automatically in Colossalai.") |
|
|
|
|
|
|
|
|
|
tokenizer_name = _FAST_LLAMA_TOKENIZER |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=use_fast,trust_remote_code=trust_remote_code) |
|
|
|
|
except TypeError as e: |
|
|
|
|
"For some LLaMA-based models, initializing the fast tokenizer may " |
|
|
|
|
"take a long time. To eliminate the initialization time, consider " |
|
|
|
|
f"using '{_FAST_LLAMA_TOKENIZER}' instead of the original " |
|
|
|
|
"tokenizer. This is done automatically in Colossalai." |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
tokenizer_name = _FAST_LLAMA_TOKENIZER |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
|
|
|
tokenizer_name, use_fast=use_fast, trust_remote_code=trust_remote_code |
|
|
|
|
) |
|
|
|
|
except TypeError: |
|
|
|
|
use_fast = False |
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=use_fast,trust_remote_code=trust_remote_code) |
|
|
|
|
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
|
|
|
tokenizer_name, use_fast=use_fast, trust_remote_code=trust_remote_code |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
def _step(self): |
|
|
|
|
async def _step(self): |
|
|
|
|
""" |
|
|
|
|
Logic for handling requests |
|
|
|
|
""" |
|
|
|
@ -136,14 +147,15 @@ class DynamicBatchManager:
|
|
|
|
|
if new_batch is not None: |
|
|
|
|
self.stats_tool.count_prompt_tokens(new_batch) |
|
|
|
|
self.running_batch = new_batch |
|
|
|
|
yield from self._prefill_batch(self.running_batch) |
|
|
|
|
async for item in self._prefill_batch(self.running_batch): |
|
|
|
|
yield item |
|
|
|
|
self._filter_runing_batch() |
|
|
|
|
self.has_wait_tokens = 0 |
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
if self.has_wait_tokens < self.max_wait_tokens: |
|
|
|
|
self.stats_tool.count_output_tokens(self.running_batch) |
|
|
|
|
yield from self._decode_batch(self.running_batch) |
|
|
|
|
self._decode_batch(self.running_batch) |
|
|
|
|
self._filter_runing_batch() |
|
|
|
|
self.has_wait_tokens += 1 |
|
|
|
|
return |
|
|
|
@ -151,18 +163,20 @@ class DynamicBatchManager:
|
|
|
|
|
new_mini_batch = self.req_queue.generate_new_batch(self.running_batch) |
|
|
|
|
if new_mini_batch is not None: |
|
|
|
|
self.stats_tool.count_prompt_tokens(new_mini_batch) |
|
|
|
|
yield from self._prefill_batch(new_mini_batch) |
|
|
|
|
async for item in self._prefill_batch(new_mini_batch): |
|
|
|
|
yield item |
|
|
|
|
if not new_mini_batch.is_clear(): |
|
|
|
|
self._merge_batch(self.running_batch, new_mini_batch) |
|
|
|
|
self.running_batch.merge(new_mini_batch) |
|
|
|
|
self.has_wait_tokens = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
|
|
self.stats_tool.count_output_tokens(self.running_batch) |
|
|
|
|
yield from self._decode_batch(self.running_batch) |
|
|
|
|
async for item in self._decode_batch(self.running_batch): |
|
|
|
|
yield item |
|
|
|
|
self._filter_runing_batch() |
|
|
|
|
self.has_wait_tokens += 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
def _init_batch(self, batch: Batch, dtype="fp16"): |
|
|
|
@ -187,7 +201,7 @@ class DynamicBatchManager:
|
|
|
|
|
) |
|
|
|
|
self.engine.cache[batch_id] = batch_data |
|
|
|
|
|
|
|
|
|
def _prefill_batch(self, batch): |
|
|
|
|
async def _prefill_batch(self, batch): |
|
|
|
|
""" |
|
|
|
|
For all batches, no matter it is a new batch or a mini batch, we need to do prefill first. |
|
|
|
|
""" |
|
|
|
@ -198,11 +212,11 @@ class DynamicBatchManager:
|
|
|
|
|
req_to_out_token_id = ans |
|
|
|
|
self._add_token_id_to_req(batch, req_to_out_token_id) |
|
|
|
|
has_new_finished_req = batch.mark_finished_req(self.eos_id) |
|
|
|
|
yield from self._handle_finish_req(batch, has_new_finished_req) |
|
|
|
|
|
|
|
|
|
async for item in self._handle_finish_req(batch, has_new_finished_req): |
|
|
|
|
yield item |
|
|
|
|
# delete finished reqs |
|
|
|
|
|
|
|
|
|
def _decode_batch(self, batch: Batch): |
|
|
|
|
async def _decode_batch(self, batch: Batch): |
|
|
|
|
""" |
|
|
|
|
Decoding process |
|
|
|
|
""" |
|
|
|
@ -210,7 +224,8 @@ class DynamicBatchManager:
|
|
|
|
|
req_to_out_token_id = ans |
|
|
|
|
self._add_token_id_to_req(batch, req_to_out_token_id) |
|
|
|
|
has_new_finished_req = batch.mark_finished_req(self.eos_id) |
|
|
|
|
yield from self._handle_finish_req(batch, has_new_finished_req) |
|
|
|
|
async for item in self._handle_finish_req(batch, has_new_finished_req): |
|
|
|
|
yield item |
|
|
|
|
|
|
|
|
|
def _filter_batch(self, batch: Batch): |
|
|
|
|
batch_id = batch.batch_id |
|
|
|
@ -240,15 +255,15 @@ class DynamicBatchManager:
|
|
|
|
|
batch.free_self() |
|
|
|
|
del batch |
|
|
|
|
|
|
|
|
|
def _handle_finish_req(self, batch: Batch, has_new_finished_req): |
|
|
|
|
async def _handle_finish_req(self, batch: Batch, has_new_finished_req): |
|
|
|
|
if has_new_finished_req: |
|
|
|
|
finished_reqs=batch.filter_finished() |
|
|
|
|
finished_reqs = batch.filter_finished() |
|
|
|
|
if batch.is_clear(): |
|
|
|
|
self._remove_batch(batch) |
|
|
|
|
else: |
|
|
|
|
self._filter_batch(batch) |
|
|
|
|
yield from self._output_process(finished_reqs) |
|
|
|
|
|
|
|
|
|
async for item in self._output_process(finished_reqs): |
|
|
|
|
yield item |
|
|
|
|
|
|
|
|
|
def _filter_runing_batch(self): |
|
|
|
|
if self.running_batch is not None and self.running_batch.is_clear(): |
|
|
|
@ -267,18 +282,24 @@ class DynamicBatchManager:
|
|
|
|
|
""" |
|
|
|
|
for req in finished_reqs: |
|
|
|
|
output = self.tokenizer.decode(req.output_ids) |
|
|
|
|
yield output, req.request_id, req.output_metadata_list |
|
|
|
|
yield req.prompts + output |
|
|
|
|
|
|
|
|
|
def clean_up(self): |
|
|
|
|
# this logic should be implemented in the future. |
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
async def generate(self,request_id,prompt_id,sampling_params): |
|
|
|
|
async def generate(self, request_id, prompt_id, sampling_params): |
|
|
|
|
""" |
|
|
|
|
Generate the output of a request. |
|
|
|
|
""" |
|
|
|
|
self.add_input(request_id,prompt_id,sampling_params) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
await self.add_input(request_id, prompt_id, sampling_params) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def process_data(dbm): |
|
|
|
|
async for data in dbm.loop_for_fwd(): |
|
|
|
|
print(data) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def start_dynamic_batching(args, tp_engine, waiting_req_list): |
|
|
|
|
try: |
|
|
|
@ -287,21 +308,13 @@ def start_dynamic_batching(args, tp_engine, waiting_req_list):
|
|
|
|
|
max_total_token_num=args.max_total_token_num, |
|
|
|
|
batch_max_tokens=args.batch_max_tokens, |
|
|
|
|
eos_id=args.eos_id, |
|
|
|
|
model=args.model, |
|
|
|
|
log_stats=not args.disable_log_stats, |
|
|
|
|
log_stats_interval=args.log_stats_interval, |
|
|
|
|
waiting_req_list=waiting_req_list, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
except Exception: |
|
|
|
|
batch_manager.clean_up() |
|
|
|
|
raise |
|
|
|
|
|
|
|
|
|
batch_manager._set_tokenizer(tokenizer_name = tp_engine.model.__class__.__name__) |
|
|
|
|
prod_task = asyncio.create_task(batch_manager.add_input(4,sampling_params=SamplingParams(),input_ids="hello world")) |
|
|
|
|
|
|
|
|
|
asyncio.run(prod_task) |
|
|
|
|
|
|
|
|
|
for item in batch_manager.loop_for_fwd(): |
|
|
|
|
print(item) |
|
|
|
|
raise RuntimeError("Failed to start dynamic batching") |
|
|
|
|
|
|
|
|
|
return batch_manager |
|
|
|
|