|
|
|
@ -1,21 +1,20 @@
|
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
|
import os, sys, shutil
|
|
|
|
|
import os, shutil
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
import pytest
|
|
|
|
|
import copy
|
|
|
|
|
import operator
|
|
|
|
|
import colossalai
|
|
|
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
|
|
|
|
from colossalai.tensor import ColoTensorSpec, ComputePattern, ComputeSpec, DistSpecManager, distspec, ProcessGroup, ColoTensor
|
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
|
from functools import partial
|
|
|
|
|
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, distspec, ProcessGroup
|
|
|
|
|
from colossalai.nn.parallel.data_parallel import ColoDDP
|
|
|
|
|
from colossalai.utils.checkpoint import save_checkpoint, load_checkpoint
|
|
|
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
|
|
|
@ -46,15 +45,17 @@ class DummyDataGenerator(ABC):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DummyDataLoader(DummyDataGenerator):
|
|
|
|
|
batch_size = 128
|
|
|
|
|
category = 16
|
|
|
|
|
feature_size = 256
|
|
|
|
|
|
|
|
|
|
def __init__(self, batch_size, category, feature_size, length=10):
|
|
|
|
|
super().__init__(length)
|
|
|
|
|
self.batch_size = batch_size
|
|
|
|
|
self.category = category
|
|
|
|
|
self.feature_size = feature_size
|
|
|
|
|
|
|
|
|
|
def generate(self):
|
|
|
|
|
image_dict = {}
|
|
|
|
|
image_dict['pixel_values'] = torch.rand(
|
|
|
|
|
DummyDataLoader.batch_size, DummyDataLoader.feature_size, device=get_current_device()) * 2 - 1
|
|
|
|
|
image_dict['label'] = torch.randint(DummyDataLoader.category, (DummyDataLoader.batch_size,),
|
|
|
|
|
image_dict['pixel_values'] = torch.rand(self.batch_size, self.feature_size, device=get_current_device()) * 2 - 1
|
|
|
|
|
image_dict['label'] = torch.randint(self.category, (self.batch_size,),
|
|
|
|
|
dtype=torch.int64,
|
|
|
|
|
device=get_current_device())
|
|
|
|
|
return image_dict
|
|
|
|
@ -102,11 +103,15 @@ def remove(path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
|
|
|
|
train_dataloader = DummyDataLoader(length=16)
|
|
|
|
|
batch = 3
|
|
|
|
|
feature = 32
|
|
|
|
|
category = 16
|
|
|
|
|
train_dataloader = DummyDataLoader(batch, category, feature, length=16)
|
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
|
model = MLP(256, 16, 64)
|
|
|
|
|
model_reload = MLP(256, 16, 64)
|
|
|
|
|
model_ref = MLP(256, 16, 64)
|
|
|
|
|
model = MLP(feature, category)
|
|
|
|
|
model_reload = MLP(feature, category)
|
|
|
|
|
model_ref = MLP(feature, category)
|
|
|
|
|
|
|
|
|
|
model = model.cuda()
|
|
|
|
|
model_reload = model_reload.cuda()
|
|
|
|
|
model_ref = model_ref.cuda()
|
|
|
|
|