[autoparallel] add unary element wise handler v2 (#1674)

pull/1683/head
YuliangLiu0306 2022-10-09 17:30:42 +08:00 committed by GitHub
parent f6c6a932b8
commit 517b63939a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 204 additions and 1 deletions

View File

@ -0,0 +1,35 @@
import torch
from .node_handler import NodeHandler
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData, StrategiesVector
from ..strategy import UnaryElementwiseGenerator, StrategyGenerator_V2
from typing import List, Dict
from .registry import operator_registry
import operator
__all__ = ['UnaryElementwiseHandler']
@operator_registry.register(torch.abs)
@operator_registry.register(torch.nn.ReLU)
class UnaryElementwiseHandler(NodeHandler):
"""
A UnaryElementwiseHandler which deals with the sharding strategies for UnaryElementwise Op.
"""
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(UnaryElementwiseGenerator(op_data_mapping, self.device_mesh, self.node.args[0]))
return generators
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
# use transposed shape for strategies
# the strategies will be transformed back to its original shape in self.post_process
physical_input_operand = OperationData(name=str(self.node.args[0]),
type=OperationDataType.ARG,
data=self.node.args[0]._meta_data)
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
mapping = {"input": physical_input_operand, "output": physical_output}
return mapping

View File

@ -2,12 +2,13 @@ from .strategy_generator import StrategyGenerator_V2
from .matmul_strategy_generator import DotProductStrategyGenerator, MatVecStrategyGenerator, LinearProjectionStrategyGenerator, BatchedMatMulStrategyGenerator
from .conv_strategy_generator import ConvStrategyGenerator
from .batch_norm_generator import BatchNormStrategyGenerator
from .unary_elementwise_generator import UnaryElementwiseGenerator
from .getitem_generator import GetItemStrategyGenerator, TensorStrategyGenerator, TensorTupleStrategyGenerator
from .layer_norm_generator import LayerNormGenerator
__all__ = [
'StrategyGenerator_V2', 'DotProductStrategyGenerator', 'MatVecStrategyGenerator',
'LinearProjectionStrategyGenerator', 'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator',
'LinearProjectionStrategyGenerator', 'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator', 'UnaryElementwiseGenerator',
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
'LayerNormGenerator'
]

View File

@ -0,0 +1,84 @@
import operator
from functools import reduce
from ..sharding_strategy import ShardingStrategy_V2, TrainCycleItem, MemoryCost
from colossalai.tensor.shape_consistency import CollectiveCommPattern
from .strategy_generator import FollowingStrategyGenerator
from typing import List
from .._utils import exception_handler
import copy
__all__ = ['UnaryElementwiseGenerator']
class UnaryElementwiseGenerator(FollowingStrategyGenerator):
"""
UnaryElementwiseGenerator which deals with the sharding strategies of UnaryElementwiseOp.
"""
def validate(self) -> bool:
return super().validate()
def update_compute_cost(self, strategy: ShardingStrategy_V2) -> TrainCycleItem:
return TrainCycleItem(fwd=10, bwd=10, total=20)
def update_memory_cost(self, strategy: ShardingStrategy_V2) -> TrainCycleItem:
'''
Compute the memory cost per device with this specific strategy.
'''
forward_size_mapping = {
'input': self._compute_size_in_bytes(strategy, "input"),
'output': self._compute_size_in_bytes(strategy, "output")
}
backward_size_mapping = copy.deepcopy(forward_size_mapping)
backward_size_mapping.pop("output")
# compute fwd cost incurred
# fwd_cost = input + output
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
# compute bwd cost incurred
# bwd_cost = input_grad
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
# compute total cost
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
parameter=fwd_parameter_cost + bwd_parameter_cost)
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
strategy.memory_cost = memory_cost
return super().update_memory_cost(strategy)
def generate(self):
strategy_list = []
# For element-wise function, we keep the sharding spec of output node same as
# the input. Therefore, the different strategies of input node with same
# output sharding spec will generate same strategy for element-wise function.
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
dim_partition_dict_mapping = {}
communication_action_mapping = {}
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
dim_partition_dict_for_input = input_sharding_spec.dim_partition_dict
dim_partition_dict_for_output = copy.deepcopy(dim_partition_dict_for_input)
dim_partition_dict_mapping = {
"input": dim_partition_dict_for_input,
"output": dim_partition_dict_for_output,
}
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
# add index into name to pass the duplicated check
# we keep same strategies with different name for node merging, and it will not increase the searching space,
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> {sharding_spec_mapping["output"].sharding_sequence}_{index}'
strategy = self.get_sharding_strategy(name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
strategy_list.append(strategy)
for strategy in strategy_list:
self.update_communication_cost(strategy)
self.update_compute_cost(strategy)
self.update_memory_cost(strategy)
return strategy_list

View File

@ -0,0 +1,83 @@
from colossalai.fx.tracer.meta_patch.patched_module import linear
import torch
import torch.nn as nn
from colossalai.fx import ColoTracer, ColoGraphModule
from colossalai.auto_parallel.solver.op_handler.unary_elementwise_handler_v2 import UnaryElementwiseHandler
from colossalai.auto_parallel.solver.op_handler.conv_handler_v2 import ConvFunctionHandler
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
class ReLuModel(nn.Module):
def __init__(self):
super().__init__()
self.act = torch.nn.ReLU()
def forward(self, input, other):
conv_node = nn.functional.conv2d(input, other)
relu_node = self.act(conv_node)
return relu_node
def test_elementwise_handler():
model = ReLuModel()
tracer = ColoTracer()
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %other : torch.Tensor [#users=1] = placeholder[target=other]
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {})
# %act : [#users=1] = call_module[target=act](args = (%conv2d,), kwargs = {})
# return act
graph = tracer.trace(model,
meta_args={
"input": torch.rand(4, 4, 64, 64).to('meta'),
"other": torch.rand(4, 16, 3, 3).to('meta'),
})
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
conv_mod_node = list(graph.nodes)[2]
relu_mod_node = list(graph.nodes)[3]
relu_strategies_vector = StrategiesVector(relu_mod_node)
conv_strategies_vector = StrategiesVector(conv_mod_node)
# build handler
conv_handler = ConvFunctionHandler(node=conv_mod_node,
device_mesh=device_mesh,
strategies_vector=conv_strategies_vector)
conv_handler.register_strategy()
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
relu_handler = UnaryElementwiseHandler(node=relu_mod_node,
device_mesh=device_mesh,
strategies_vector=relu_strategies_vector)
relu_handler.register_strategy()
# check operation data mapping
mapping = relu_handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.data is not None
assert mapping['input'].name == "conv2d"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([4, 4, 62, 62])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 4, 62, 62])
assert mapping['output'].name == "act"
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([4, 4, 62, 62])
assert mapping['output'].type == OperationDataType.OUTPUT
# getitem is a following strategy handler, so the number of strategies is equal to the predecessor node.
assert len(relu_strategies_vector) == len(conv_strategies_vector)
if __name__ == '__main__':
test_elementwise_handler()