mirror of https://github.com/hpcaitech/ColossalAI
[embedding] add tablewise sharding for FAW (#1526)
parent
f1e1836218
commit
5156d5b4f8
|
@ -3,10 +3,11 @@ from .linear import ColoLinear
|
|||
from .embedding import ColoEmbedding
|
||||
from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module
|
||||
|
||||
from .cache_embedding import FreqAwareEmbeddingBag, ParallelFreqAwareEmbeddingBag, CachedParamMgr, LimitBuffIndexCopyer, EvictionStrategy
|
||||
from .cache_embedding import FreqAwareEmbeddingBag, ParallelFreqAwareEmbeddingBag, CachedParamMgr, LimitBuffIndexCopyer, EvictionStrategy, \
|
||||
ParallelFreqAwareEmbeddingBagTablewise, TablewiseEmbeddingBagConfig
|
||||
|
||||
__all__ = [
|
||||
'ColoModule', 'register_colo_module', 'is_colo_module', 'get_colo_module', 'init_colo_module', 'check_colo_module',
|
||||
'ColoLinear', 'ColoEmbedding', 'FreqAwareEmbeddingBag', 'ParallelFreqAwareEmbeddingBag', 'CachedParamMgr',
|
||||
'LimitBuffIndexCopyer', 'EvictionStrategy'
|
||||
'LimitBuffIndexCopyer', 'EvictionStrategy', 'ParallelFreqAwareEmbeddingBagTablewise', 'TablewiseEmbeddingBagConfig'
|
||||
]
|
||||
|
|
|
@ -2,8 +2,8 @@ from .cache_mgr import CachedParamMgr, EvictionStrategy
|
|||
from .copyer import LimitBuffIndexCopyer
|
||||
from .freq_aware_embedding import FreqAwareEmbeddingBag
|
||||
from .parallel_freq_aware_embedding import ParallelFreqAwareEmbeddingBag
|
||||
|
||||
from .parallel_freq_aware_embedding_tablewise import ParallelFreqAwareEmbeddingBagTablewise, TablewiseEmbeddingBagConfig
|
||||
__all__ = [
|
||||
'CachedParamMgr', 'LimitBuffIndexCopyer', 'FreqAwareEmbeddingBag', 'ParallelFreqAwareEmbeddingBag',
|
||||
'EvictionStrategy'
|
||||
'EvictionStrategy', 'ParallelFreqAwareEmbeddingBagTablewise', 'TablewiseEmbeddingBagConfig'
|
||||
]
|
||||
|
|
|
@ -99,7 +99,7 @@ class FreqAwareEmbeddingBag(BaseEmbeddingBag):
|
|||
def forward(self, indices, offsets=None, per_sample_weights=None, shape_hook=None):
|
||||
with torch.no_grad():
|
||||
reorder_ids = self.cache_weight_mgr.prepare_ids(indices)
|
||||
|
||||
|
||||
embeddings = F.embedding_bag(reorder_ids.cuda(), self.cache_weight_mgr.cuda_cached_weight, offsets,
|
||||
self.max_norm, self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
|
||||
per_sample_weights, self.include_last_offset, self.padding_idx)
|
||||
|
|
|
@ -79,10 +79,8 @@ class ParallelFreqAwareEmbeddingBag(FreqAwareEmbeddingBag):
|
|||
output_shard = F.embedding_bag(reorder_ids.cuda(), self.cache_weight_mgr.cuda_cached_weight, offsets,
|
||||
self.max_norm, self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
|
||||
per_sample_weights, self.include_last_offset, self.padding_idx)
|
||||
|
||||
if shape_hook is not None:
|
||||
output_shard = shape_hook(output_shard)
|
||||
|
||||
output_full = dual_all_to_all(output_shard,
|
||||
self.weight.get_process_group(),
|
||||
scatter_dim=scatter_dim,
|
||||
|
|
|
@ -0,0 +1,192 @@
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from typing import List, Optional, Iterator, Tuple
|
||||
import abc
|
||||
|
||||
from .freq_aware_embedding import FreqAwareEmbeddingBag
|
||||
|
||||
from colossalai.tensor import ColoParameter, ShardSpec, ComputePattern, ProcessGroup, ColoTensorSpec, ColoTensor
|
||||
from .cache_mgr import CachedParamMgr, EvictionStrategy
|
||||
|
||||
|
||||
class TablewiseEmbeddingBagConfig:
|
||||
'''
|
||||
example:
|
||||
def prepare_tablewise_config(args, cache_ratio, ...):
|
||||
embedding_bag_config_list: List[TablewiseEmbeddingBagConfig] = []
|
||||
...
|
||||
return embedding_bag_config_list
|
||||
'''
|
||||
def __init__(self,
|
||||
num_embeddings: int,
|
||||
cuda_row_num: int,
|
||||
assigned_rank: int = 0,
|
||||
buffer_size=50_000,
|
||||
ids_freq_mapping=None,
|
||||
initial_weight: torch.tensor = None,
|
||||
name: str = ""):
|
||||
self.num_embeddings = num_embeddings
|
||||
self.cuda_row_num = cuda_row_num
|
||||
self.assigned_rank = assigned_rank
|
||||
self.buffer_size = buffer_size
|
||||
self.ids_freq_mapping = ids_freq_mapping
|
||||
self.initial_weight = initial_weight
|
||||
self.name = name
|
||||
|
||||
|
||||
|
||||
def _all_to_all_for_tablewise(x: torch.Tensor, pg: ProcessGroup, scatter_strides: List[int], gather_strides: List[int], forward=True) -> torch.Tensor:
|
||||
world_size = pg.tp_world_size()
|
||||
rank = pg.tp_local_rank()
|
||||
if world_size == 1:
|
||||
return x
|
||||
assert x.device.type == 'cuda', f"Currently, the collective function dual_all_to_all only supports nccl backend"
|
||||
if forward:
|
||||
scatter_list = list(x.split(scatter_strides, 0))
|
||||
gather_list = [torch.empty(scatter_strides[rank], gather_strides[i], dtype=x.dtype,
|
||||
device=x.device) for i in range(world_size)]
|
||||
torch.distributed.all_to_all(gather_list, scatter_list, group=pg.tp_process_group())
|
||||
return torch.cat(gather_list, 1).contiguous()
|
||||
else:
|
||||
# split on dim 1, lose contiguity
|
||||
scatter_list = [each.contiguous() for each in x.split(scatter_strides, 1)]
|
||||
gather_list = [torch.empty(gather_strides[i], scatter_strides[rank], dtype=x.dtype,
|
||||
device=x.device) for i in range(world_size)]
|
||||
torch.distributed.all_to_all(gather_list, scatter_list, group=pg.tp_process_group())
|
||||
return torch.cat(gather_list, 0).contiguous()
|
||||
|
||||
|
||||
class _DualAllToAllForTablewise(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x, pg, scatter_strides, gather_strides):
|
||||
ctx.pg = pg
|
||||
ctx.scatter_strides = scatter_strides
|
||||
ctx.gather_strides = gather_strides
|
||||
return _all_to_all_for_tablewise(x, pg, scatter_strides, gather_strides, forward=True)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad):
|
||||
return _all_to_all_for_tablewise(grad, ctx.pg, ctx.gather_strides, ctx.scatter_strides, forward=False), None, None, None
|
||||
|
||||
|
||||
def _dual_all_to_all(x, pg, scatter_strides, gather_strides):
|
||||
return _DualAllToAllForTablewise.apply(x, pg, scatter_strides, gather_strides)
|
||||
|
||||
|
||||
class ParallelFreqAwareEmbeddingBagTablewise(abc.ABC, nn.Module):
|
||||
'''
|
||||
every table assigned to this class instance is managed by a FreqAwareEmbeddingBag.
|
||||
'''
|
||||
|
||||
def __init__(self,
|
||||
embedding_bag_config_list: List[TablewiseEmbeddingBagConfig],
|
||||
embedding_dim: int,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
mode='mean',
|
||||
include_last_offset=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
warmup_ratio=0.7,
|
||||
pin_weight=False,
|
||||
evict_strategy: EvictionStrategy = EvictionStrategy.LFU):
|
||||
super(ParallelFreqAwareEmbeddingBagTablewise, self).__init__()
|
||||
self.rank = dist.get_rank()
|
||||
self.world_size = dist.get_world_size()
|
||||
self.global_table_assign_list = [config.assigned_rank for config in embedding_bag_config_list]
|
||||
self.global_table_num_embeddings_list = [config.num_embeddings for config in embedding_bag_config_list]
|
||||
self.global_tables_num = len(embedding_bag_config_list)
|
||||
self.global_tables_offsets = torch.cumsum(torch.tensor([0] + self.global_table_num_embeddings_list), 0)
|
||||
|
||||
self.assigned_table_list: List[int] = []
|
||||
for i, rank in enumerate(self.global_table_assign_list):
|
||||
if rank == self.rank:
|
||||
self.assigned_table_list.append(i)
|
||||
self.include_last_offset = include_last_offset
|
||||
self.pg = ProcessGroup(tp_degree=self.world_size)
|
||||
|
||||
# prepare FreqAwareEmbeddingBag list
|
||||
|
||||
self.freq_aware_embedding_bag_list: nn.ModuleList = nn.ModuleList()
|
||||
for config in embedding_bag_config_list:
|
||||
if config.assigned_rank != self.rank:
|
||||
continue
|
||||
self.freq_aware_embedding_bag_list.append(
|
||||
FreqAwareEmbeddingBag(
|
||||
num_embeddings=config.num_embeddings,
|
||||
embedding_dim=embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=config.initial_weight,
|
||||
mode=mode,
|
||||
include_last_offset=include_last_offset,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
cuda_row_num=config.cuda_row_num ,
|
||||
ids_freq_mapping=config.ids_freq_mapping,
|
||||
warmup_ratio=warmup_ratio,
|
||||
buffer_size=config.buffer_size,
|
||||
pin_weight=pin_weight,
|
||||
evict_strategy=evict_strategy
|
||||
)
|
||||
)
|
||||
|
||||
# prepare list shape for all_to_all output
|
||||
self.embedding_dim_per_rank = [0 for i in range(self.world_size)]
|
||||
for rank in self.global_table_assign_list:
|
||||
self.embedding_dim_per_rank[rank] += embedding_dim
|
||||
|
||||
#print("global_table_assign_list {}".format(self.global_table_assign_list))
|
||||
#print("global_table_num_embeddings_list {}".format(self.global_table_num_embeddings_list))
|
||||
#print("global_tables_offsets {}".format(self.global_tables_offsets))
|
||||
#
|
||||
def forward(self, indices: torch.Tensor, offsets: torch.Tensor = None, per_sample_weights=None, shape_hook=None):
|
||||
# determine indices to handle
|
||||
batch_size = (offsets.shape[0]) // self.global_tables_num
|
||||
local_output_list = []
|
||||
for i, handle_table in enumerate(self.assigned_table_list):
|
||||
indices_start_position = offsets[batch_size * handle_table]
|
||||
if (not self.include_last_offset) and (batch_size * (handle_table + 1) >= indices.shape[0]):
|
||||
# till the end special case
|
||||
indices_end_position = indices.shape[0]
|
||||
else :
|
||||
indices_end_position = offsets[batch_size * (handle_table + 1)]
|
||||
|
||||
local_indices = indices[indices_start_position:indices_end_position] - \
|
||||
self.global_tables_offsets[handle_table]
|
||||
if self.include_last_offset:
|
||||
local_offsets = offsets[batch_size * handle_table:batch_size
|
||||
* (handle_table + 1) + 1] - offsets[batch_size * (handle_table)]
|
||||
else:
|
||||
local_offsets = offsets[batch_size * handle_table:batch_size
|
||||
* (handle_table + 1)] - offsets[batch_size * (handle_table)]
|
||||
local_per_sample_weights = None
|
||||
if per_sample_weights != None:
|
||||
local_per_sample_weights = per_sample_weights[indices_start_position:indices_end_position]
|
||||
local_output_list.append(
|
||||
self.freq_aware_embedding_bag_list[i](
|
||||
local_indices,
|
||||
local_offsets,
|
||||
local_per_sample_weights
|
||||
)
|
||||
)
|
||||
|
||||
# get result of shape = (batch_size, (len(assigned_table_list)*embedding_dim))
|
||||
local_output = torch.cat(local_output_list, 1)
|
||||
# then concatenate those local_output on the second demension.
|
||||
# use all_to_all
|
||||
remains = batch_size % self.world_size
|
||||
scatter_strides = [batch_size // self.world_size + int(i < remains) for i in range(self.world_size)]
|
||||
output_full = _dual_all_to_all(local_output, self.pg, scatter_strides, self.embedding_dim_per_rank)
|
||||
if shape_hook is not None:
|
||||
output_full = shape_hook(output_full)
|
||||
return output_full
|
|
@ -12,7 +12,9 @@ from colossalai.utils import free_port
|
|||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from colossalai.tensor import ColoParameter, ProcessGroup, ShardSpec, ComputePattern, ComputeSpec, \
|
||||
ColoTensor, ColoTensorSpec
|
||||
from colossalai.nn.parallel.layers import CachedParamMgr, FreqAwareEmbeddingBag, ParallelFreqAwareEmbeddingBag, EvictionStrategy
|
||||
from colossalai.nn.parallel.layers import CachedParamMgr, FreqAwareEmbeddingBag, ParallelFreqAwareEmbeddingBag, EvictionStrategy, \
|
||||
ParallelFreqAwareEmbeddingBagTablewise, TablewiseEmbeddingBagConfig
|
||||
from typing import List
|
||||
|
||||
NUM_EMBED, EMBED_DIM = 10, 8
|
||||
BATCH_SIZE = 8
|
||||
|
@ -200,7 +202,72 @@ def gather_tensor(tensor, rank, world_size):
|
|||
return gather_list
|
||||
|
||||
|
||||
def run_parallel_freq_aware_embed(rank, world_size):
|
||||
def run_parallel_freq_aware_embed_tablewise(rank, world_size):
|
||||
if world_size != 2:
|
||||
return
|
||||
device = torch.device('cuda', torch.cuda.current_device())
|
||||
|
||||
# initialize weight
|
||||
# 3 feature tables. idx: 0~5, 6~10, 11~17
|
||||
weight_table1 = torch.rand(6, 5)
|
||||
weight_table2 = torch.rand(5, 5)
|
||||
weight_table3 = torch.rand(7, 5)
|
||||
embedding_bag_config_list: List[TablewiseEmbeddingBagConfig] = []
|
||||
embedding_bag_config_list.append(TablewiseEmbeddingBagConfig(
|
||||
num_embeddings=6, cuda_row_num=4, assigned_rank=0, initial_weight=weight_table1.clone().detach().cpu()))
|
||||
embedding_bag_config_list.append(TablewiseEmbeddingBagConfig(
|
||||
num_embeddings=5, cuda_row_num=4, assigned_rank=0, initial_weight=weight_table2.clone().detach().cpu()))
|
||||
embedding_bag_config_list.append(TablewiseEmbeddingBagConfig(
|
||||
num_embeddings=7, cuda_row_num=4, assigned_rank=1, initial_weight=weight_table3.clone().detach().cpu()))
|
||||
|
||||
model = ParallelFreqAwareEmbeddingBagTablewise(
|
||||
embedding_bag_config_list,
|
||||
embedding_dim=5,
|
||||
evict_strategy=EvictionStrategy.LFU,
|
||||
include_last_offset=True
|
||||
)
|
||||
# demo explain:
|
||||
'''
|
||||
batch feature 1 feature 2 feature 3
|
||||
input0 [1,2,3] [6,7] []
|
||||
input1 [] [9] [13,15]
|
||||
input2 [1,5] [6,8] [11]
|
||||
↑ ↑ ↑
|
||||
rank 0 rank 0 rank 1
|
||||
in KJT format
|
||||
'''
|
||||
res = model(torch.tensor([1, 2, 3, 1, 5, 6, 7, 9, 6, 8, 13, 15, 11], device=device),
|
||||
torch.tensor([0, 3, 3, 5, 7, 8, 10, 10, 12, 13], device=device))
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
|
||||
rand_grad = torch.rand(3, 5 * 3, dtype=res.dtype, device=res.device)
|
||||
if rank == 0:
|
||||
fake_grad = rand_grad[0:2]
|
||||
else :
|
||||
fake_grad = rand_grad[2:]
|
||||
|
||||
res.backward(fake_grad)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
# check correctness on weight_table2
|
||||
if rank == 0:
|
||||
ref_model = torch.nn.EmbeddingBag.from_pretrained(weight_table2.detach().clone(),
|
||||
include_last_offset=True,
|
||||
freeze=False).to(device)
|
||||
ref_optimizer = torch.optim.SGD(ref_model.parameters(), lr=1e-2)
|
||||
ref_grad = rand_grad[:, 5:10]
|
||||
ref_res = ref_model(torch.tensor([0, 1, 3, 0, 2], device=device), torch.tensor([0, 2, 3, 5], device=device))
|
||||
ref_res.backward(ref_grad)
|
||||
ref_optimizer.step()
|
||||
ref_optimizer.zero_grad()
|
||||
|
||||
model.freq_aware_embedding_bag_list[1].cache_weight_mgr.flush() # update cpu weight
|
||||
recover_weight = model.freq_aware_embedding_bag_list[1].cache_weight_mgr.weight
|
||||
assert torch.allclose(recover_weight, ref_model.weight.detach().cpu()
|
||||
), f"{recover_weight - ref_model.weight.detach().cpu()}"
|
||||
|
||||
|
||||
def run_parallel_freq_aware_embed_columnwise(rank, world_size):
|
||||
device = torch.device('cuda', torch.cuda.current_device())
|
||||
|
||||
num_embed = 100
|
||||
|
@ -219,7 +286,8 @@ def run_parallel_freq_aware_embed(rank, world_size):
|
|||
model = ParallelFreqAwareEmbeddingBag.from_pretrained(coloweight,
|
||||
include_last_offset=True,
|
||||
freeze=False,
|
||||
cuda_row_num=batch_size * 2)
|
||||
cuda_row_num=batch_size * 2,
|
||||
)
|
||||
|
||||
assert model.cache_weight_mgr.weight.device.type == 'cpu'
|
||||
assert model.cache_weight_mgr.cuda_cached_weight.requires_grad
|
||||
|
@ -269,7 +337,8 @@ def run_parallel_freq_aware_embed(rank, world_size):
|
|||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_parallel_freq_aware_embed(rank, world_size)
|
||||
# run_parallel_freq_aware_embed_columnwise(rank, world_size)
|
||||
run_parallel_freq_aware_embed_tablewise(rank, world_size)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@ -281,6 +350,6 @@ def test_parallel_freq_aware_embed(world_size):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_freq_aware_embed(True)
|
||||
# test_parallel_freq_aware_embed(2)
|
||||
# test_freq_aware_embed(True)
|
||||
test_parallel_freq_aware_embed(2)
|
||||
# test_lfu_strategy(False)
|
||||
|
|
Loading…
Reference in New Issue