mirror of https://github.com/hpcaitech/ColossalAI
[pipeline/pipleline_process_group] finish PipelineProcessGroup to manage local abd global rank in TP,DP and PP (#1508)
* support p2p communication with any type of object | pass test * reconstruct pipeline schedule with p2p_v2.py(support communication with List[Any]) | pass test * [engin/schedule] use p2p_v2 to recontruct pipeline_schedule * [pipeline/rpc] implement a demo for PP with cuda rpc framework * [pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B * [pipeline/rpc] implement distributed optimizer | test with assert_close * [pipeline/rpc] implement distributed optimizer | test with assert_close * [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy * [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy * [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy * [pipeline/pipleline_process_group] finish PipelineProcessGroup to manage local abd global rank in TP,DP and PP * [pipeline/pipleline_process_group] remove comment * [pipeline/pipleline_process_group] remove comment * [pipeline/pipleline_process_group] skip process group test * [pipeline/pipleline_process_group] remove test named functionpull/1533/head
parent
8a29ce5443
commit
f1e1836218
|
@ -0,0 +1,135 @@
|
|||
from typing import List, Dict, Tuple
|
||||
import os
|
||||
|
||||
from torch.distributed import rpc
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.tensor import ProcessGroup
|
||||
|
||||
|
||||
class PipelineProcessGroup:
|
||||
# TODO : flexible API for DP size and TP size
|
||||
# In the future design mode, dp_degree and tp_degree should be removed
|
||||
def __init__(self,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
dp_degree: int = 1,
|
||||
tp_degree: int = 1,
|
||||
num_worker_threads: int = 1,
|
||||
device: str = "cuda") -> None:
|
||||
device_mesh_size = dp_degree * tp_degree
|
||||
assert world_size % device_mesh_size == 0, "world_size must be the multiple of dp_degree * tp_degree !!!"
|
||||
self._num_worker_threads = num_worker_threads
|
||||
|
||||
self._device_mesh_size = device_mesh_size
|
||||
self._rank = rank
|
||||
self._world_size = world_size
|
||||
self._dp_degree = dp_degree
|
||||
self._tp_degree = tp_degree
|
||||
self.device = device
|
||||
self._stage_num = world_size // device_mesh_size
|
||||
self._pp_rank = rank // device_mesh_size
|
||||
self._pp_ranks = [(rank % device_mesh_size) + i * device_mesh_size for i in range(self._stage_num)]
|
||||
self._local_stage_ranks = [(rank // device_mesh_size * device_mesh_size) + i for i in range(device_mesh_size)]
|
||||
|
||||
# pp_ranks
|
||||
self._initialize_pp_process_group()
|
||||
|
||||
# initialise tp dp process groups
|
||||
self._initialize_tp_dp_process_group()
|
||||
|
||||
# status
|
||||
self._is_first_pp_rank = self._pp_rank == 0
|
||||
self._is_last_pp_rank = self._pp_rank == self._stage_num - 1
|
||||
|
||||
def _initialize_process_group(self):
|
||||
stage_num = self.get_stage_num()
|
||||
if stage_num == 1:
|
||||
return
|
||||
device = self.device
|
||||
world_size = self.get_world_size()
|
||||
rank = self.get_global_rank()
|
||||
backend = 'nccl' if device == 'cuda' else 'gloo'
|
||||
dist.init_process_group(backend, world_size=world_size, rank=rank, group_name='main_group')
|
||||
|
||||
def _initialize_pp_process_group(self) -> None:
|
||||
rank = self.get_global_rank()
|
||||
world_size = self.get_world_size()
|
||||
|
||||
# build rpc connection
|
||||
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=self._num_worker_threads)
|
||||
|
||||
for pp_rank in self._pp_ranks:
|
||||
options.set_device_map(f'work{pp_rank}', {rank: pp_rank})
|
||||
|
||||
rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options)
|
||||
|
||||
def _initialize_tp_dp_process_group(self) -> None:
|
||||
rank = self.get_global_rank()
|
||||
local_stage_ranks = self.get_local_stage_global_ranks()
|
||||
dp_degree = self.get_dp_degree()
|
||||
tp_degree = self.get_tp_degree()
|
||||
self._tp_dp_process_group = ProcessGroup(rank, local_stage_ranks, tp_degree, dp_degree)
|
||||
|
||||
def get_global_rank(self):
|
||||
return self._rank
|
||||
|
||||
def get_world_size(self):
|
||||
return self._world_size
|
||||
|
||||
def get_dp_degree(self) -> int:
|
||||
return self._dp_degree
|
||||
|
||||
def get_tp_degree(self) -> int:
|
||||
return self._tp_degree
|
||||
|
||||
def get_local_device_mesh_size(self) -> int:
|
||||
return self._device_mesh_size
|
||||
|
||||
def get_device_mesh_num(self) -> int:
|
||||
pass
|
||||
|
||||
def get_stage_num(self) -> int:
|
||||
return self._stage_num
|
||||
|
||||
def is_first_stage(self) -> bool:
|
||||
return self._is_first_pp_rank
|
||||
|
||||
def is_last_stage(self) -> bool:
|
||||
return self._is_last_pp_rank
|
||||
|
||||
def check_pp_rank_valid(self, pp_rank: int) -> bool:
|
||||
return -1 < pp_rank < self._stage_num
|
||||
|
||||
def get_local_pp_rank(self) -> int:
|
||||
return self._pp_rank
|
||||
|
||||
def get_prev_pp_rank(self) -> int:
|
||||
prev_pp_rank = self._pp_rank - 1
|
||||
if not self.check_pp_rank_valid(prev_pp_rank):
|
||||
assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a previous stage!")
|
||||
return prev_pp_rank
|
||||
|
||||
def get_next_pp_rank(self) -> int:
|
||||
next_pp_rank = self._pp_rank + 1
|
||||
if not self.check_pp_rank_valid(next_pp_rank):
|
||||
assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a next stage!")
|
||||
return next_pp_rank
|
||||
|
||||
def get_local_stage_global_ranks(self) -> List[int]:
|
||||
return self._local_stage_ranks
|
||||
|
||||
def local_dp_rank(self) -> int:
|
||||
return self._tp_dp_process_group.dp_local_rank()
|
||||
|
||||
def local_tp_rank(self) -> int:
|
||||
return self._tp_dp_process_group.tp_local_rank()
|
||||
|
||||
def get_pp_global_ranks(self) -> int:
|
||||
return self._pp_ranks
|
||||
|
||||
def get_dp_global_ranks(self):
|
||||
pass
|
||||
|
||||
def get_tp_global_ranks(self):
|
||||
pass
|
|
@ -1,13 +1,17 @@
|
|||
import os
|
||||
import argparse
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed.rpc as rpc
|
||||
from torch.optim import SGD, Adam, RMSprop, Optimizer
|
||||
from torch._C._distributed_rpc import _is_current_rpc_agent_set
|
||||
from colorama import Back, Style
|
||||
|
||||
rpc_is_initialized = _is_current_rpc_agent_set
|
||||
|
||||
|
||||
def color_debug(text, prefix=' ', color='blue'):
|
||||
color = color.upper()
|
||||
|
@ -52,6 +56,19 @@ def parse_args():
|
|||
return parser.parse_args()
|
||||
|
||||
|
||||
def pg_parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--world_size', type=int, default=4)
|
||||
parser.add_argument('--dp_degree', type=int, default=2)
|
||||
parser.add_argument('--tp_degree', type=int, default=1)
|
||||
parser.add_argument('--chunk', type=int, default=1)
|
||||
parser.add_argument('--num_worker_threads', type=str, default=128)
|
||||
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
|
||||
parser.add_argument('--master_addr', type=str, default='localhost')
|
||||
parser.add_argument('--master_port', type=str, default='29020')
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def run_worker(rank, args, master_func):
|
||||
os.environ['MASTER_ADDR'] = args.master_addr
|
||||
os.environ['MASTER_PORT'] = args.master_port
|
||||
|
@ -71,7 +88,10 @@ def run_worker(rank, args, master_func):
|
|||
if rank == 0:
|
||||
master_func(args)
|
||||
# barrier here
|
||||
rpc.shutdown()
|
||||
if rpc_is_initialized():
|
||||
rpc.shutdown()
|
||||
else:
|
||||
warnings.warn("RPC has not been initialized")
|
||||
|
||||
|
||||
def rpc_run(args, master_func):
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
import os
|
||||
|
||||
import torch.distributed.rpc as rpc
|
||||
import torch.multiprocessing as mp
|
||||
import pytest
|
||||
|
||||
from colossalai.pipeline.pipeline_process_group import PipelineProcessGroup
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from rpc_test_utils import pg_parse_args, rpc_is_initialized
|
||||
|
||||
|
||||
def run_worker(rank, args):
|
||||
os.environ['MASTER_ADDR'] = args.master_addr
|
||||
os.environ['MASTER_PORT'] = args.master_port
|
||||
|
||||
device = args.device
|
||||
world_size = args.world_size
|
||||
dp_degree = args.dp_degree
|
||||
tp_degree = args.tp_degree
|
||||
num_worker_threads = args.num_worker_threads
|
||||
host = args.master_addr
|
||||
port = args.master_port
|
||||
backend = 'nccl' if device == 'cuda' else 'gloo'
|
||||
|
||||
disable_existing_loggers()
|
||||
launch(dict(), rank, world_size, host, int(port), backend, verbose=False)
|
||||
|
||||
pg = PipelineProcessGroup(rank=rank,
|
||||
world_size=world_size,
|
||||
dp_degree=dp_degree,
|
||||
tp_degree=tp_degree,
|
||||
num_worker_threads=num_worker_threads,
|
||||
device=device)
|
||||
|
||||
if rpc_is_initialized():
|
||||
rpc.shutdown()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = pg_parse_args()
|
||||
world_size = args.world_size
|
||||
mp.spawn(run_worker, args=(args,), nprocs=world_size)
|
Loading…
Reference in New Issue