|
|
|
@ -1,8 +1,9 @@
|
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
|
from torch.fx.node import Node
|
|
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
|
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
|
|
|
from typing import Dict, List
|
|
|
|
|
from ..sharding_strategy import ShardingStrategy_V2, StrategiesVector, OperationData
|
|
|
|
|
from ..sharding_strategy import ShardingStrategy_V2, StrategiesVector, OperationData, TrainCycleItem
|
|
|
|
|
from ..strategy import StrategyGenerator_V2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -28,13 +29,53 @@ class NodeHandler(ABC):
|
|
|
|
|
self.device_mesh = device_mesh
|
|
|
|
|
self.strategies_vector = strategies_vector
|
|
|
|
|
|
|
|
|
|
def register_strategy(self) -> StrategiesVector:
|
|
|
|
|
def update_resharding_cost(self, strategy: ShardingStrategy_V2) -> None:
|
|
|
|
|
"""
|
|
|
|
|
Compute the resharding costs and save the costs in the ShardingStrategy object.
|
|
|
|
|
"""
|
|
|
|
|
# TODO: test this function when other handlers are ready
|
|
|
|
|
resharding_costs = {}
|
|
|
|
|
shape_consistency_manager = ShapeConsistencyManager()
|
|
|
|
|
for node in self.predecessor_node:
|
|
|
|
|
node_name = str(node)
|
|
|
|
|
|
|
|
|
|
# get the sharding specs for this node generated
|
|
|
|
|
# in its own node handler
|
|
|
|
|
assert hasattr(node, 'strategies_vector'), \
|
|
|
|
|
f'The predecessor node {node_name} has no strategy vector to compute the resharding cost.'
|
|
|
|
|
prev_strategy_vector = node.strategies_vector
|
|
|
|
|
prev_sharding_specs = [strategy.get_sharding_spec_by_name(node_name) for strategy in prev_strategy_vector]
|
|
|
|
|
|
|
|
|
|
# get the current sharding spec generated by this node handler
|
|
|
|
|
op_data = strategy.get_op_data_by_name(node_name)
|
|
|
|
|
current_sharding_spec = strategy.sharding_specs[op_data]
|
|
|
|
|
|
|
|
|
|
# create data structrure to store costs
|
|
|
|
|
if op_data not in resharding_costs:
|
|
|
|
|
resharding_costs[op_data] = {}
|
|
|
|
|
|
|
|
|
|
# for each sharding spec generated by the predecessor's node handler
|
|
|
|
|
# compute the resharding cost to switch to the sharding spec generated
|
|
|
|
|
# by the current node handler
|
|
|
|
|
for prev_sharding_spec in prev_sharding_specs:
|
|
|
|
|
fwd_cost = shape_consistency_manager.shape_consistency(prev_sharding_spec, current_sharding_spec)
|
|
|
|
|
bwd_cost = shape_consistency_manager.shape_consistency(current_sharding_spec, prev_sharding_spec)
|
|
|
|
|
resharding_cost = TrainCycleItem(fwd=fwd_cost, bwd=bwd_cost, total=fwd_cost + bwd_cost)
|
|
|
|
|
resharding_costs[op_data][prev_sharding_spec] = resharding_cost
|
|
|
|
|
strategy.resharding_costs = resharding_costs
|
|
|
|
|
|
|
|
|
|
def register_strategy(self, compute_resharding_cost: bool = False) -> StrategiesVector:
|
|
|
|
|
"""
|
|
|
|
|
Register different sharding strategies for the current node.
|
|
|
|
|
"""
|
|
|
|
|
strategy_generators = self.get_strategy_generator()
|
|
|
|
|
for generator in strategy_generators:
|
|
|
|
|
strategies = generator.generate()
|
|
|
|
|
|
|
|
|
|
# compute the resharding costs based on the previous node
|
|
|
|
|
# strategies if specified
|
|
|
|
|
if compute_resharding_cost:
|
|
|
|
|
strategies = list(map(self.update_resharding_cost, strategies))
|
|
|
|
|
self.strategies_vector.extend(strategies)
|
|
|
|
|
|
|
|
|
|
strategies_vector = map(self.post_process, self.strategies_vector)
|
|
|
|
|