[Inference/Feat] Add convert_fp8 op for fp8 test in the future (#5706)

* add convert_fp8 op for fp8 test in the future

* rerun ci
pull/5714/head
傅剑寒 7 months ago committed by GitHub
parent bfad39357b
commit 50104ab340
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -0,0 +1,127 @@
#include <torch/extension.h>
#include <ATen/cuda/Exceptions.h>
#include <ATen/cuda/CUDAContext.h>
#include <cmath>
#include "common/micros.h"
#include "utils/vec_copy.h"
#include "funcs/cast_functor.h"
using colossalAI::cuda::utils::copy;
using colossalAI::cuda::utils::get_vec_size;
using colossalAI::funcs::CastFunctor;
template <typename InT, typename OutT, int VecSize>
__global__ void convert_fp8_kernel(const InT* ins_data, OutT* outs_data, int numel, int tail)
{
int64_t idx = static_cast<int64_t>(threadIdx.x) + static_cast<int64_t>(blockIdx.x) * static_cast<int64_t>(blockDim.x);
const int64_t grid_size = blockDim.x * gridDim.x;
if(idx > numel + tail) {
return;
}
for(int64_t i = idx; i < numel; i += grid_size) {
copy<InT, OutT, VecSize>(ins_data + i * VecSize, outs_data + i * VecSize);
}
// Tail process
if(threadIdx.x == 0)
{
for(int i = 0; i < tail; ++i)
{
outs_data[i + numel * VecSize] = CastFunctor<InT, OutT>()(ins_data[i + numel * VecSize]);
}
}
}
template <typename InT, typename OutT>
void apply_convert_fp8(torch::Tensor& input, torch::Tensor& output)
{
const int kVecSize = get_vec_size<InT>(input);
const int kNumel = torch::numel(input);
const int kVecNumel = (kNumel >> static_cast<int>(std::log2(kVecSize)));
const int kTail = kNumel & (kVecSize - 1);
int grid_size = kVecNumel ? (kVecNumel + 255) / 256 : 1;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
dim3 grid(grid_size);
dim3 block(256);
#define _(VEC_SIZE) \
convert_fp8_kernel<InT, OutT, VEC_SIZE> \
<<<grid, block, 0, stream>>> \
(reinterpret_cast<const InT*>(input.data_ptr()), \
reinterpret_cast<OutT*>(output.data_ptr()), \
kVecNumel, \
kTail)
switch (kVecSize)
{
case 1:
_(1);
break;
case 2:
_(2);
break;
case 4:
_(4);
break;
}
#undef _
AT_CUDA_CHECK(cudaGetLastError());
}
void convert_fp8(torch::Tensor& input, torch::Tensor& output)
{
TORCH_CHECK(input.scalar_type() == at::ScalarType::Byte || output.scalar_type() == at::ScalarType::Byte, "Data type of Input or Output should be torch.uint8 for convert_fp8!");
TORCH_CHECK(input.scalar_type() != output.scalar_type(), "Data type of input and output are the same!");
TORCH_CHECK(input.scalar_type() == at::ScalarType::Byte ||
input.scalar_type() == at::ScalarType::Float ||
input.scalar_type() == at::ScalarType::Half ||
input.scalar_type() == at::ScalarType::BFloat16, "Unsupported dtype of input!");
TORCH_CHECK(output.scalar_type() == at::ScalarType::Byte ||
output.scalar_type() == at::ScalarType::Float ||
output.scalar_type() == at::ScalarType::Half ||
output.scalar_type() == at::ScalarType::BFloat16, "Unsupported dtype of output!");
TORCH_CHECK(input.sizes() == output.sizes(), "Shape of input and output should be the same!");
#define _(InT, OutT) \
apply_convert_fp8<InT, OutT>(input, output)
if(input.scalar_type() == at::ScalarType::Byte)
{
if(output.scalar_type() == at::ScalarType::Float)
{
_(uint8_t, float);
}
else if(output.scalar_type() == at::ScalarType::Half)
{
_(uint8_t, half);
}
else if(output.scalar_type() == at::ScalarType::BFloat16)
{
_(uint8_t, __nv_bfloat16);
}
}
else
{
if(input.scalar_type() == at::ScalarType::Float)
{
_(float, uint8_t);
}
else if(input.scalar_type() == at::ScalarType::Half)
{
_(half, uint8_t);
}
else if(input.scalar_type() == at::ScalarType::BFloat16)
{
_(__nv_bfloat16, uint8_t);
}
}
#undef _
}

@ -1,9 +1,6 @@
#pragma once #pragma once
#include <cuda_fp16.h>
#include <stdint.h>
#include "common/vec_type_traits.h" #include "common/vec_type_traits.h"
#include "funcs/cast_functor.h" #include "funcs/cast_functor.h"
@ -12,9 +9,9 @@ namespace cuda {
namespace utils { namespace utils {
// Note(LiuYang): Depreciated // Note(LiuYang): Depreciated
template <typename T, int vec_size> template <typename T, int VecSize>
__device__ __inline__ void copy_vector(T *dst, const T *src) { __device__ __inline__ void copy_vector(T *dst, const T *src) {
using VT = typename common::VecTypeTrait<T, vec_size>::Type; using VT = typename common::VecTypeTrait<T, VecSize>::Type;
*(reinterpret_cast<VT *>(dst)) = *(reinterpret_cast<const VT *>(src)); *(reinterpret_cast<VT *>(dst)) = *(reinterpret_cast<const VT *>(src));
} }
@ -34,17 +31,17 @@ __device__ __inline__ void copy_zero_vector(T *dst) {
*(reinterpret_cast<VT *>(dst)) = funcs::CastFunctor<float, VT>()(0.0f); *(reinterpret_cast<VT *>(dst)) = funcs::CastFunctor<float, VT>()(0.0f);
} }
template <typename SrcT, typename DstT, int vec_size> template <typename SrcT, typename DstT, int VecSize>
__device__ __inline__ void copy(const SrcT *src, DstT *dst) { __device__ __inline__ void copy(const SrcT *src, DstT *dst) {
using SrcVT = typename common::VecTypeTrait<SrcT, vec_size>::Type; using SrcVT = typename common::VecTypeTrait<SrcT, VecSize>::Type;
using DstVT = typename common::VecTypeTrait<DstT, vec_size>::Type; using DstVT = typename common::VecTypeTrait<DstT, VecSize>::Type;
*(reinterpret_cast<DstVT *>(dst)) = funcs::CastFunctor<SrcVT, DstVT>()( *(reinterpret_cast<DstVT *>(dst)) = funcs::CastFunctor<SrcVT, DstVT>()(
*(reinterpret_cast<const SrcVT *>(src))); *(reinterpret_cast<const SrcVT *>(src)));
} }
template <typename T, int vec_size> template <typename T, int VecSize>
__device__ __inline__ void copy(const T *src, T *dst) { __device__ __inline__ void copy(const T *src, T *dst) {
using VT = typename common::VecTypeTrait<T, vec_size>::Type; using VT = typename common::VecTypeTrait<T, VecSize>::Type;
*(reinterpret_cast<VT *>(dst)) = *(reinterpret_cast<const VT *>(src)); *(reinterpret_cast<VT *>(dst)) = *(reinterpret_cast<const VT *>(src));
} }

@ -75,6 +75,8 @@ void flash_decoding_attention(
torch::Tensor& tmp_out_lse, // [num_tokens, num_heads, max_num_partitions] torch::Tensor& tmp_out_lse, // [num_tokens, num_heads, max_num_partitions]
const c10::optional<torch::Tensor>& alibi_slopes, float scale); const c10::optional<torch::Tensor>& alibi_slopes, float scale);
void convert_fp8(torch::Tensor& input, torch::Tensor& output);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("decode_kv_cache_memcpy", &decode_kv_cache_memcpy, m.def("decode_kv_cache_memcpy", &decode_kv_cache_memcpy,
"Copy the GPU memory of kvcache during the decode stage."); "Copy the GPU memory of kvcache during the decode stage.");
@ -102,4 +104,7 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("flash_decoding_attention", &flash_decoding_attention, m.def("flash_decoding_attention", &flash_decoding_attention,
"Compute the attention between an input query and the cached " "Compute the attention between an input query and the cached "
"keys/values using PagedAttention."); "keys/values using PagedAttention.");
m.def("convert_fp8", &convert_fp8,
"Convert input to fp8 output or convert fp8 input to output.");
} }

@ -17,6 +17,7 @@ class InferenceOpsCudaExtension(_CudaExtension):
"kernel/cuda/rms_layernorm_kernel.cu", "kernel/cuda/rms_layernorm_kernel.cu",
"kernel/cuda/get_cos_and_sin_kernel.cu", "kernel/cuda/get_cos_and_sin_kernel.cu",
"kernel/cuda/flash_decoding_attention_kernel.cu", "kernel/cuda/flash_decoding_attention_kernel.cu",
"kernel/cuda/convert_fp8_kernel.cu",
] ]
] + [self.pybind_abs_path("inference/inference.cpp")] ] + [self.pybind_abs_path("inference/inference.cpp")]
return ret return ret

@ -0,0 +1,57 @@
import random
import pytest
import torch
from colossalai.kernel.kernel_loader import InferenceOpsLoader
from colossalai.utils import get_current_device
inference_ops = InferenceOpsLoader().load()
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [42] # Arbitrary values for testing
NUM_LAYERS = [1] # Arbitrary values for testing
NUM_HEADS = [8] # Arbitrary values for testing
HEAD_SIZES = [64, 80, 96, 112, 128, 256]
BLOCK_SIZES = [8, 16, 32]
@pytest.mark.skipif(True, reason="FP8 conversion still needs improvement, now we skip it's relative test!")
@pytest.mark.parametrize("num_heads", [8])
@pytest.mark.parametrize("head_size", [64, 80, 96, 112, 128, 256])
@pytest.mark.parametrize("block_size", [8, 16, 32])
@pytest.mark.parametrize("num_blocks", [1024, 10000])
@pytest.mark.parametrize("dtype", [torch.half, torch.bfloat16, torch.float])
@pytest.mark.parametrize("seed", [0])
@torch.inference_mode()
def test_fp8_conversion(
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
device = get_current_device()
low = -224.0
high = 224.0
shape = (num_blocks, num_heads, head_size, block_size)
cache = torch.empty(shape, dtype=dtype, device=device)
cache.uniform_(low, high)
cache_fp8 = torch.empty_like(cache, dtype=torch.uint8)
inference_ops.convert_fp8(cache, cache_fp8)
converted_cache = torch.empty_like(cache)
inference_ops.convert_fp8(cache_fp8, converted_cache)
assert torch.allclose(cache, converted_cache, atol=0.001, rtol=0.1)
if __name__ == "__main__":
test_fp8_conversion(8, 64, 8, 1024, torch.half, 0)
Loading…
Cancel
Save