[zero] alleviate memory usage in ZeRODDP state_dict (#1398)

pull/1396/head
HELSON 2 years ago committed by GitHub
parent 4f5f8f77d1
commit 4e98e938ce
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -6,12 +6,13 @@ from colossalai.zero.utils.zero_hook_v2 import ZeROHookV2
from colossalai.gemini.chunk import TensorState, Chunk
from colossalai.tensor.param_op_hook import ParamOpHookManager
from colossalai.gemini.gemini_mgr import GeminiManager
from typing import Dict, Iterable, List, Optional
from typing import Dict, Iterable, List, Optional, Set
from colossalai.logging import get_dist_logger
from collections import OrderedDict
from colossalai.tensor.colo_parameter import ColoParameter
from colossalai.tensor import ProcessGroup as ColoProcessGroup
from .reducer import Reducer
try:
from torch.nn.modules.module import _EXTRA_STATE_KEY_SUFFIX, _IncompatibleKeys
except ImportError:
@ -84,6 +85,18 @@ class ColoDDP(torch.nn.Module):
def named_parameters(self, prefix: str = '', recurse: bool = True):
return self.module.named_parameters(prefix, recurse)
def named_buffers(self, prefix: str = '', recurse: bool = True):
return self.module.named_buffers(prefix, recurse)
def named_children(self):
return self.module.named_children()
def named_modules(self,
memo: Optional[Set[torch.nn.Module]] = None,
prefix: str = '',
remove_duplicate: bool = True):
return self.module.named_modules(memo, prefix, remove_duplicate)
def forward(self, *args, **kwargs):
self.module.zero_grad(set_to_none=True)
return self.module(*args, **kwargs)
@ -274,7 +287,7 @@ class ZeroDDP(ColoDDP):
for tensor in chunk.get_tensors():
self.grads_device[tensor] = device
def state_dict(self, destination=None, prefix='', keep_vars=False):
def state_dict(self, destination=None, prefix='', keep_vars=False, only_rank_0: bool = True):
r"""Returns a dictionary containing a whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are
@ -291,18 +304,22 @@ class ZeroDDP(ColoDDP):
['bias', 'weight']
"""
is_rank_0 = self.chunk_manager.process_group.dp_local_rank() == 0
record_flag = (not only_rank_0) or is_rank_0
if destination is None:
destination = OrderedDict()
destination._metadata = OrderedDict()
destination._metadata[prefix[:-1]] = local_metadata = dict(version=self._version)
self._save_to_state_dict(destination, prefix, keep_vars)
self._save_to_state_dict(destination, prefix, keep_vars, record_flag)
for hook in self._state_dict_hooks.values():
hook_result = hook(self, destination, prefix, local_metadata)
if hook_result is not None:
destination = hook_result
return destination
def _save_to_state_dict(self, destination, prefix, keep_vars):
def _save_to_state_dict(self, destination, prefix, keep_vars, record_flag: bool = True):
r"""Saves module state to `destination` dictionary, containing a state
of the module, but not its descendants. This is called on every
submodule in :meth:`~torch.nn.Module.state_dict`.
@ -315,22 +332,36 @@ class ZeroDDP(ColoDDP):
prefix (str): the prefix for parameters and buffers used in this
module
"""
chunks = self.chunk_manager.get_chunks(self.fp32_params)
chunks_orig_device_type = []
for chunk in chunks:
chunks_orig_device_type.append(chunk.device_type)
# save parameters
param_to_save_data = dict()
chunk_list = self.chunk_manager.get_chunks(self.fp32_params)
for chunk in chunk_list:
# record the original device of the chunk
org_chunk_dev_typ = chunk.device_type
self.chunk_manager.access_chunk(chunk)
for tensor in chunk.get_tensors():
rec_p = torch.empty([0])
if record_flag:
rec_p = tensor.cpu() # move the whole tensor to CPU mem
assert tensor not in param_to_save_data
param_to_save_data[tensor] = rec_p
# release the actual memory of the chunk
self.chunk_manager.release_chunk(chunk)
if not chunk.is_empty and org_chunk_dev_typ == 'cpu':
self.chunk_manager.move_chunk(chunk, torch.device('cpu'))
for (name, p), fp32_p in zip(self.named_parameters(), self.fp32_params):
if p is not None:
rec_p = fp32_p.clone() if fp32_p.device.type == 'cpu' else fp32_p.cpu()
assert fp32_p in param_to_save_data, "Parameter '{}' is neglected in the chunk list".format(name)
rec_p = param_to_save_data[fp32_p]
destination[prefix + name] = rec_p if keep_vars else rec_p.detach()
for orig_dvice_type, chunk in zip(chunks_orig_device_type, chunks):
self.chunk_manager.release_chunk(chunk)
if not chunk.is_empty and orig_dvice_type == 'cpu':
self.chunk_manager.move_chunk(chunk, torch.device('cpu'))
# save all buffers
for name, buf in self.named_buffers():
if buf is not None and name not in self._non_persistent_buffers_set:
destination[prefix + name] = buf if keep_vars else buf.detach()
# save extra states
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
if getattr(self.__class__, "get_extra_state",
torch.nn.Module.get_extra_state) is not torch.nn.Module.get_extra_state:

@ -1,3 +1,5 @@
import copy
import pytest
import colossalai
import torch
@ -11,9 +13,9 @@ from functools import partial
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.nn.parallel import ZeroDDP, ColoDDP
from colossalai.gemini.gemini_mgr import GeminiManager
from typing import Callable
from collections import OrderedDict
from colossalai.tensor import ProcessGroup, ColoParameter
from colossalai.testing import parameterize
def check_state_dict_equal(state_dict: OrderedDict, other_state_dict: OrderedDict):
@ -25,7 +27,27 @@ def check_state_dict_equal(state_dict: OrderedDict, other_state_dict: OrderedDic
else:
temp_t2 = t2
assert torch.equal(t1, temp_t2)
assert torch.equal(t1, temp_t2), "\t{}\n\t{}".format(t1, temp_t2)
def check_model_equal(model_a, model_b, allow_empty: bool = False, same_dtype: bool = True):
for (na, pa), (nb, pb) in zip(model_a.named_parameters(), model_b.named_parameters()):
assert na == nb
if not allow_empty:
assert pa.storage().size() > 0
assert pb.storage().size() > 0
else:
if pa.storage().size() == 0 or pb.storage().size() == 0:
continue
if same_dtype:
assert pa.dtype == pb.dtype
temp_pb = pb
else:
temp_pb = pb.to(pa.dtype)
assert torch.equal(pa, temp_pb), "Parameter '{}' is not equal.\n {} {}".format(na, pa, pb)
def init_ddp(module: torch.nn.Module) -> ColoDDP:
@ -33,22 +55,26 @@ def init_ddp(module: torch.nn.Module) -> ColoDDP:
return ColoDDP(module, process_group=pg)
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False, use_zero: bool = False) -> ZeroDDP:
def init_ddpv2(module: torch.nn.Module,
use_chunk: bool = False,
use_zero: bool = False,
placement_policy: str = 'cuda') -> ZeroDDP:
pg = ProcessGroup()
chunk_size = ChunkManager.search_chunk_size(module, 64, 4) if use_chunk else None
chunk_manager = ChunkManager(chunk_size, pg, enable_distributed_storage=use_zero)
gemini_manager = GeminiManager('cuda', chunk_manager)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
return ZeroDDP(module, gemini_manager)
def run_state_dict(ddp_init_func: Callable[[torch.nn.Module], ColoDDP]):
get_components_func = non_distributed_component_funcs.get_callable('nested_model')
def run_ddp_state_dict():
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
torch_model = model_builder().cuda()
with ColoInitContext(device=get_current_device()):
model = model_builder()
model = ddp_init_func(model)
model = init_ddp(model)
torch_state_dict = torch_model.state_dict()
for param in model.parameters():
if isinstance(param, ColoParameter):
assert param.get_process_group() is not None
@ -62,13 +88,44 @@ def run_state_dict(ddp_init_func: Callable[[torch.nn.Module], ColoDDP]):
check_state_dict_equal(torch_state_dict, state_dict)
@parameterize('use_chunk', [False, True])
@parameterize('placement_policy', ['cuda', 'cpu'])
@parameterize('use_zero', [False, True])
@parameterize('only_rank_0', [False, True])
def run_zero_state_dict(use_chunk, placement_policy, use_zero, only_rank_0):
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
torch_model = model_builder().cuda()
org_torch_model = copy.deepcopy(torch_model)
torch_state_dict = torch_model.state_dict()
with ColoInitContext(device=get_current_device()):
model = model_builder()
model = init_ddpv2(model, use_chunk, use_zero, placement_policy)
for param in model.parameters():
if isinstance(param, ColoParameter):
assert param.get_process_group() is not None
model.load_state_dict(torch_state_dict, strict=False)
check_model_equal(model, torch_model, allow_empty=True, same_dtype=False)
for param in model.parameters():
if isinstance(param, ColoParameter):
assert param.get_process_group() is not None
pg = ProcessGroup()
state_dict = model.state_dict(only_rank_0=only_rank_0)
if not only_rank_0 or pg.dp_local_rank() == 0:
torch_model.load_state_dict(state_dict, strict=False)
check_model_equal(torch_model, org_torch_model, allow_empty=False, same_dtype=True)
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_state_dict(init_ddp)
run_state_dict(partial(init_ddpv2, use_chunk=False, use_zero=False))
run_state_dict(partial(init_ddpv2, use_chunk=False, use_zero=True))
run_state_dict(partial(init_ddpv2, use_chunk=True, use_zero=False))
run_state_dict(partial(init_ddpv2, use_chunk=True, use_zero=True))
run_ddp_state_dict()
run_zero_state_dict()
@pytest.mark.dist

Loading…
Cancel
Save