[hotfix] fix initialize bug with zero (#442)

pull/445/head
Jiarui Fang 2022-03-17 13:16:22 +08:00 committed by GitHub
parent 725a39f4bd
commit 496cbb0760
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 87 additions and 58 deletions

View File

@ -11,17 +11,13 @@ from .apex_amp import convert_to_apex_amp
from .naive_amp import convert_to_naive_amp
def convert_to_amp(model: nn.Module,
optimizer: Optimizer,
criterion: _Loss,
mode: AMP_TYPE,
amp_config: Config = None):
def convert_to_amp(model: nn.Module, optimizer: Optimizer, criterion: _Loss, mode: AMP_TYPE, amp_config: Config = None):
"""A helper function to wrap training components with Torch AMP modules
:param model: your model object
:type model: :class:`torch.nn.Module`
:param optimizer: your optimizer object
:type optimizer: :class:`torch.optim.Optimzer`
:type optimizer: :class:`torch.optim.Optimizer`
:param criterion: your loss function object
:type criterion: :class:`torch.nn.modules.loss._Loss`
:param mode: amp mode

View File

@ -3,15 +3,13 @@ import torch.nn as nn
from torch.optim import Optimizer
def convert_to_apex_amp(model: nn.Module,
optimizer: Optimizer,
amp_config):
def convert_to_apex_amp(model: nn.Module, optimizer: Optimizer, amp_config):
"""A helper function to wrap training components with Apex AMP modules
:param model: your model object
:type model: :class:`torch.nn.Module`
:param optimizer: your optimizer object
:type optimizer: :class:`torch.optim.Optimzer`
:type optimizer: :class:`torch.optim.Optimizer`
:param amp_config: configuration for nvidia apex
:type amp_config: :class:`colossalai.context.Config` or dict

View File

@ -12,7 +12,7 @@ def convert_to_naive_amp(model: nn.Module, optimizer: Optimizer, amp_config):
:param model: your model object
:type model: :class:`torch.nn.Module`
:param optimizer: your optimizer object
:type optimizer: :class:`torch.optim.Optimzer`
:type optimizer: :class:`torch.optim.Optimizer`
:param amp_config: configuration for naive mode amp
:type amp_config: :class:`colossalai.context.Config` or dict

View File

@ -15,7 +15,7 @@ def convert_to_torch_amp(model: nn.Module,
:param model: your model object
:type model: :class:`torch.nn.Module`
:param optimizer: your optimizer object
:type optimizer: :class:`torch.optim.Optimzer`
:type optimizer: :class:`torch.optim.Optimizer`
:param criterion: your loss function object
:type criterion: :class:`torch.nn.modules.loss._Loss`, optional
:param amp_config: configuration for different amp modes

View File

@ -268,6 +268,7 @@ def initialize(model: Union[Callable, nn.Module],
if verbose:
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
# zero
use_zero = hasattr(gpc.config, 'zero')
if use_zero:
zero_cfg = gpc.config.get('zero', None)
@ -275,10 +276,13 @@ def initialize(model: Union[Callable, nn.Module],
cfg_ = zero_cfg.copy()
else:
cfg_ = {}
optimizer_config = zero_cfg.get('optimzer', None)
model, optimizer = convert_to_zero_v2(model_builder=model, optimizer_config=optimizer_config)
optimizer_config = zero_cfg.get('optimizer_config', None)
model_config = zero_cfg.get('model_config', None)
model, optimizer = convert_to_zero_v2(model_builder=model,
model_config=model_config,
optimizer_config=optimizer_config)
logger.info("Initializing ZeRO model and optimzer finished!", ranks=[0])
logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0])
#FIXME() throw a warning if using zero with MP
if gpc.get_world_size(ParallelMode.MODEL) > 1:
logger.warning("ZeRO currently has not been tested with model parallelism.", ranks=[0])
@ -289,6 +293,11 @@ def initialize(model: Union[Callable, nn.Module],
elif isinstance(model, Callable):
model = model().to(get_current_device())
# optimizer maybe a optimizer_cls
logger.warning("Initializing an non ZeRO model with optimizer class")
if isinstance(optimizer, Callable):
optimizer = optimizer(model.parameters())
if not moe_env.is_initialized() and not use_zero:
if is_using_sequence():
sync_model_param(model, ParallelMode.SEQUENCE_DP)

View File

@ -1,4 +1,3 @@
import imp
import torch
from colossalai.utils import get_current_device

View File

@ -17,7 +17,7 @@ from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
def convert_to_zero_v2(model_builder: Callable, optimizer_config) -> (ShardedModelV2, ShardedOptimizerV2):
def convert_to_zero_v2(model_builder: Callable, model_config, optimizer_config) -> (ShardedModelV2, ShardedOptimizerV2):
"""
A helper function to integrate the model and optimizer with ZeRO optimizer and off-loading
@ -35,28 +35,26 @@ def convert_to_zero_v2(model_builder: Callable, optimizer_config) -> (ShardedMod
# FIXME() pass shard strategy from config
shard_strategy = TensorShardStrategy()
logger.info(f'optimizer_config is {optimizer_config}')
if optimizer_config is None:
optimizer_config = dict()
logger.info(f'model_config is {model_config}')
if model_config is None:
model_config = dict()
if isinstance(model_builder, nn.Module):
model = model_builder
elif isinstance(model_builder, Callable):
with ZeroInitContext(convert_fp16='fp16' in gpc.config,
target_device=torch.cuda.current_device(),
shard_strategy=shard_strategy,
shard_param=True):
shard_param=model_config.get('shard_param', True)):
model = model_builder()
else:
raise TypeError(f"convert_to_zero_v2 dose not support model_builder of type {type(convert_to_zero_v2)}")
zero_model = ShardedModelV2(model, shard_strategy=shard_strategy)
optimizer_class = optimizer_config.get('optimizer_type', None)
if optimizer_class is None:
raise RuntimeError("Set optimizer_class in zero_config")
logger.info(f'optimizer class is {optimizer_class}')
cfg = optimizer_config.get('optimizer_config', None)
logger.info(f'optimizer_config is {cfg}')
zero_optimizer = ShardedOptimizerV2(zero_model, optimizer_class, **optimizer_config.get('optimizer_config', None))
zero_model = ShardedModelV2(model, shard_strategy=shard_strategy, **model_config)
zero_optimizer = ShardedOptimizerV2(zero_model, **optimizer_config)
return zero_model, zero_optimizer

View File

@ -1,5 +1,4 @@
import functools
from asyncio.log import logger
from collections import OrderedDict
from typing import Any, Optional

View File

@ -10,7 +10,7 @@ from colossalai.amp.amp_type import AMP_TYPE
from colossalai.builder import build_pipeline_model
from colossalai.engine.schedule import PipelineSchedule
from colossalai.logging import get_dist_logger
from colossalai.nn import Accuracy, LinearWarmupLR
from colossalai.nn import LinearWarmupLR
from colossalai.nn.loss import CrossEntropyLoss
from colossalai.trainer import Trainer, hooks
from colossalai.utils import MultiTimer, free_port, get_dataloader
@ -19,7 +19,7 @@ from model_zoo.vit import vit_tiny_patch4_32
from torchvision import transforms
from torchvision.datasets import CIFAR10
BATCH_SIZE = 16
BATCH_SIZE = 4
NUM_EPOCHS = 60
WARMUP_EPOCHS = 5
CONFIG = dict(parallel=dict(pipeline=2, tensor=dict(size=2, mode='1d')),

View File

@ -2,23 +2,38 @@ from functools import partial
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.logging import get_dist_logger
from colossalai.utils import checkpoint
from colossalai.zero.sharded_model import ShardedModelV2
LOGGER = get_dist_logger()
LOGGER = get_dist_logger('zero_test')
_ZERO_OPTIMIZER_CONFIG = dict(optimizer_type=torch.optim.Adam, optimizer_config=dict(lr=1e-3))
_ZERO_OFFLOAD_OPTIMIZER_CONFIG = dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False)
_ZERO_OFFLOAD_PARAM_CONFIG = dict(device='cpu', pin_memory=True, buffer_count=5, buffer_size=1e8, max_in_cpu=1e9)
MP_PARALLEL_CONFIG = dict(fp16=dict(mode=None,), parallel=dict(pipeline=dict(size=1), tensor=dict(size=2, mode=None)))
_ZERO_MODEL_CONFIG = dict(reduce_scatter_bucket_size_mb=25,
fp32_reduce_scatter=False,
offload_config=None,
gradient_predivide_factor=1.0,
shard_param=True,
use_memory_tracer=False)
_ZERO_OPTIMIZER_CONFIG = dict(
optimizer_class=torch.optim.Adam,
cpu_offload=False,
initial_scale=2**32,
min_scale=1,
growth_factor=2,
backoff_factor=0.5,
growth_interval=1000,
hysteresis=2,
max_scale=2**32,
)
ZERO_PARALLEL_CONFIG = dict(fp16=dict(mode=None,),
zero=dict(
optimzer=_ZERO_OPTIMIZER_CONFIG,
offload_optimizer_config=_ZERO_OFFLOAD_OPTIMIZER_CONFIG,
offload_param_config=_ZERO_OFFLOAD_PARAM_CONFIG,
model_config=_ZERO_MODEL_CONFIG,
optimizer_config=_ZERO_OPTIMIZER_CONFIG,
),
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
@ -72,8 +87,8 @@ def check_grads(model, zero_model, loose=False):
def check_params(model, zero_model, loose=False):
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_p = zero_p.clone().to(p.device)
assert p.dtype == zero_p.dtype
assert allclose(p, zero_p, loose=loose)
# assert p.dtype == zero_p.dtype
assert allclose(p.float(), zero_p.float(), loose=loose), f"diff {p.float() - zero_p.float()}"
def check_grads_padding(model, zero_model, loose=False):

View File

@ -19,7 +19,7 @@ def run_dist(rank, world_size, port):
# as this model has sync batch normalization
# need to configure cudnn deterministic so that
# randomness of convolution layers will be disabled
zero_config = dict(optimzer=dict(optimizer_type=torch.optim.Adam, optimizer_config=dict(lr=1e-3)))
zero_config = dict(optimizer_config=dict(optimizer_class=torch.optim.Adam, lr=1e-3))
colossalai.launch(config=dict(zero=zero_config, cudnn_determinstic=True, cudnn_benchmark=False),
rank=rank,
world_size=world_size,

View File

@ -3,19 +3,22 @@
import copy
from functools import partial
from colossalai.zero.sharded_model.sharded_model_v2 import ShardedModelV2
import pytest
import colossalai
from colossalai.utils import free_port
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from tests.components_to_test.registry import non_distributed_component_funcs
from common import check_sharded_params_padding, ZERO_PARALLEL_CONFIG
from common import check_sharded_params_padding, ZERO_PARALLEL_CONFIG, MP_PARALLEL_CONFIG, check_params
def run_dist(rank, world_size, port):
colossalai.launch(config=ZERO_PARALLEL_CONFIG,
def run_dist(rank, world_size, port, parallel_config):
colossalai.launch(config=parallel_config,
rank=rank,
world_size=world_size,
host='localhost',
@ -27,22 +30,21 @@ def run_dist(rank, world_size, port):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
# adapt to a Callbale with empty parameters
# def module_builder_new():
# return model_builder(checkpoint=True)
zero_model = model_builder(checkpoint=True)
torch_model = copy.deepcopy(zero_model).cuda()
engine, train_dataloader, _, _ = colossalai.initialize(zero_model,
colo_model = model_builder(checkpoint=True)
torch_model = copy.deepcopy(colo_model).cuda()
engine, train_dataloader, _, _ = colossalai.initialize(colo_model,
optimizer=optimizer_class,
criterion=criterion,
train_dataloader=train_dataloader)
engine.train()
torch_optimizer = optimizer_class(torch_model.parameters())
if dist.get_world_size() > 1:
torch_model = DDP(torch_model)
i = 0
for data, label in train_dataloader:
if i > 3:
if i > 4:
break
data, label = data.cuda(), label.cuda()
@ -67,15 +69,28 @@ def run_dist(rank, world_size, port):
torch_optimizer.step()
i += 1
check_sharded_params_padding(torch_model, zero_model, loose=True)
# for torch_param, zero_param in zip(torch_model.parameters(), colo_model.parameters()):
# assert torch.allclose(torch_param, zero_param), f"diff {torch_param - zero_param}"
if parallel_config == MP_PARALLEL_CONFIG:
check_params(torch_model, colo_model, loose=True)
elif isinstance(colo_model, ShardedModelV2):
check_sharded_params_padding(torch_model, colo_model, loose=True)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
def test_mp_engine(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=MP_PARALLEL_CONFIG)
mp.spawn(run_func, nprocs=world_size)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
def test_zero_init(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
def test_zero_engine(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=ZERO_PARALLEL_CONFIG)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_zero_init(world_size=2)
test_zero_engine(world_size=4)