mirror of https://github.com/hpcaitech/ColossalAI
[hotfix] fix initialize bug with zero (#442)
parent
725a39f4bd
commit
496cbb0760
|
@ -11,17 +11,13 @@ from .apex_amp import convert_to_apex_amp
|
|||
from .naive_amp import convert_to_naive_amp
|
||||
|
||||
|
||||
def convert_to_amp(model: nn.Module,
|
||||
optimizer: Optimizer,
|
||||
criterion: _Loss,
|
||||
mode: AMP_TYPE,
|
||||
amp_config: Config = None):
|
||||
def convert_to_amp(model: nn.Module, optimizer: Optimizer, criterion: _Loss, mode: AMP_TYPE, amp_config: Config = None):
|
||||
"""A helper function to wrap training components with Torch AMP modules
|
||||
|
||||
:param model: your model object
|
||||
:type model: :class:`torch.nn.Module`
|
||||
:param optimizer: your optimizer object
|
||||
:type optimizer: :class:`torch.optim.Optimzer`
|
||||
:type optimizer: :class:`torch.optim.Optimizer`
|
||||
:param criterion: your loss function object
|
||||
:type criterion: :class:`torch.nn.modules.loss._Loss`
|
||||
:param mode: amp mode
|
||||
|
|
|
@ -3,15 +3,13 @@ import torch.nn as nn
|
|||
from torch.optim import Optimizer
|
||||
|
||||
|
||||
def convert_to_apex_amp(model: nn.Module,
|
||||
optimizer: Optimizer,
|
||||
amp_config):
|
||||
def convert_to_apex_amp(model: nn.Module, optimizer: Optimizer, amp_config):
|
||||
"""A helper function to wrap training components with Apex AMP modules
|
||||
|
||||
:param model: your model object
|
||||
:type model: :class:`torch.nn.Module`
|
||||
:param optimizer: your optimizer object
|
||||
:type optimizer: :class:`torch.optim.Optimzer`
|
||||
:type optimizer: :class:`torch.optim.Optimizer`
|
||||
:param amp_config: configuration for nvidia apex
|
||||
:type amp_config: :class:`colossalai.context.Config` or dict
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ def convert_to_naive_amp(model: nn.Module, optimizer: Optimizer, amp_config):
|
|||
:param model: your model object
|
||||
:type model: :class:`torch.nn.Module`
|
||||
:param optimizer: your optimizer object
|
||||
:type optimizer: :class:`torch.optim.Optimzer`
|
||||
:type optimizer: :class:`torch.optim.Optimizer`
|
||||
:param amp_config: configuration for naive mode amp
|
||||
:type amp_config: :class:`colossalai.context.Config` or dict
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ def convert_to_torch_amp(model: nn.Module,
|
|||
:param model: your model object
|
||||
:type model: :class:`torch.nn.Module`
|
||||
:param optimizer: your optimizer object
|
||||
:type optimizer: :class:`torch.optim.Optimzer`
|
||||
:type optimizer: :class:`torch.optim.Optimizer`
|
||||
:param criterion: your loss function object
|
||||
:type criterion: :class:`torch.nn.modules.loss._Loss`, optional
|
||||
:param amp_config: configuration for different amp modes
|
||||
|
|
|
@ -268,6 +268,7 @@ def initialize(model: Union[Callable, nn.Module],
|
|||
if verbose:
|
||||
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
|
||||
|
||||
# zero
|
||||
use_zero = hasattr(gpc.config, 'zero')
|
||||
if use_zero:
|
||||
zero_cfg = gpc.config.get('zero', None)
|
||||
|
@ -275,10 +276,13 @@ def initialize(model: Union[Callable, nn.Module],
|
|||
cfg_ = zero_cfg.copy()
|
||||
else:
|
||||
cfg_ = {}
|
||||
optimizer_config = zero_cfg.get('optimzer', None)
|
||||
model, optimizer = convert_to_zero_v2(model_builder=model, optimizer_config=optimizer_config)
|
||||
optimizer_config = zero_cfg.get('optimizer_config', None)
|
||||
model_config = zero_cfg.get('model_config', None)
|
||||
model, optimizer = convert_to_zero_v2(model_builder=model,
|
||||
model_config=model_config,
|
||||
optimizer_config=optimizer_config)
|
||||
|
||||
logger.info("Initializing ZeRO model and optimzer finished!", ranks=[0])
|
||||
logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0])
|
||||
#FIXME() throw a warning if using zero with MP
|
||||
if gpc.get_world_size(ParallelMode.MODEL) > 1:
|
||||
logger.warning("ZeRO currently has not been tested with model parallelism.", ranks=[0])
|
||||
|
@ -289,6 +293,11 @@ def initialize(model: Union[Callable, nn.Module],
|
|||
elif isinstance(model, Callable):
|
||||
model = model().to(get_current_device())
|
||||
|
||||
# optimizer maybe a optimizer_cls
|
||||
logger.warning("Initializing an non ZeRO model with optimizer class")
|
||||
if isinstance(optimizer, Callable):
|
||||
optimizer = optimizer(model.parameters())
|
||||
|
||||
if not moe_env.is_initialized() and not use_zero:
|
||||
if is_using_sequence():
|
||||
sync_model_param(model, ParallelMode.SEQUENCE_DP)
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import imp
|
||||
import torch
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ from colossalai.core import global_context as gpc
|
|||
from colossalai.logging import get_dist_logger
|
||||
|
||||
|
||||
def convert_to_zero_v2(model_builder: Callable, optimizer_config) -> (ShardedModelV2, ShardedOptimizerV2):
|
||||
def convert_to_zero_v2(model_builder: Callable, model_config, optimizer_config) -> (ShardedModelV2, ShardedOptimizerV2):
|
||||
"""
|
||||
A helper function to integrate the model and optimizer with ZeRO optimizer and off-loading
|
||||
|
||||
|
@ -35,28 +35,26 @@ def convert_to_zero_v2(model_builder: Callable, optimizer_config) -> (ShardedMod
|
|||
# FIXME() pass shard strategy from config
|
||||
shard_strategy = TensorShardStrategy()
|
||||
|
||||
logger.info(f'optimizer_config is {optimizer_config}')
|
||||
if optimizer_config is None:
|
||||
optimizer_config = dict()
|
||||
logger.info(f'model_config is {model_config}')
|
||||
if model_config is None:
|
||||
model_config = dict()
|
||||
|
||||
if isinstance(model_builder, nn.Module):
|
||||
model = model_builder
|
||||
elif isinstance(model_builder, Callable):
|
||||
with ZeroInitContext(convert_fp16='fp16' in gpc.config,
|
||||
target_device=torch.cuda.current_device(),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True):
|
||||
shard_param=model_config.get('shard_param', True)):
|
||||
model = model_builder()
|
||||
else:
|
||||
raise TypeError(f"convert_to_zero_v2 dose not support model_builder of type {type(convert_to_zero_v2)}")
|
||||
|
||||
zero_model = ShardedModelV2(model, shard_strategy=shard_strategy)
|
||||
|
||||
optimizer_class = optimizer_config.get('optimizer_type', None)
|
||||
if optimizer_class is None:
|
||||
raise RuntimeError("Set optimizer_class in zero_config")
|
||||
logger.info(f'optimizer class is {optimizer_class}')
|
||||
|
||||
cfg = optimizer_config.get('optimizer_config', None)
|
||||
logger.info(f'optimizer_config is {cfg}')
|
||||
|
||||
zero_optimizer = ShardedOptimizerV2(zero_model, optimizer_class, **optimizer_config.get('optimizer_config', None))
|
||||
zero_model = ShardedModelV2(model, shard_strategy=shard_strategy, **model_config)
|
||||
zero_optimizer = ShardedOptimizerV2(zero_model, **optimizer_config)
|
||||
return zero_model, zero_optimizer
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
import functools
|
||||
from asyncio.log import logger
|
||||
from collections import OrderedDict
|
||||
from typing import Any, Optional
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ from colossalai.amp.amp_type import AMP_TYPE
|
|||
from colossalai.builder import build_pipeline_model
|
||||
from colossalai.engine.schedule import PipelineSchedule
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.nn import Accuracy, LinearWarmupLR
|
||||
from colossalai.nn import LinearWarmupLR
|
||||
from colossalai.nn.loss import CrossEntropyLoss
|
||||
from colossalai.trainer import Trainer, hooks
|
||||
from colossalai.utils import MultiTimer, free_port, get_dataloader
|
||||
|
@ -19,7 +19,7 @@ from model_zoo.vit import vit_tiny_patch4_32
|
|||
from torchvision import transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
|
||||
BATCH_SIZE = 16
|
||||
BATCH_SIZE = 4
|
||||
NUM_EPOCHS = 60
|
||||
WARMUP_EPOCHS = 5
|
||||
CONFIG = dict(parallel=dict(pipeline=2, tensor=dict(size=2, mode='1d')),
|
||||
|
|
|
@ -2,23 +2,38 @@ from functools import partial
|
|||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import checkpoint
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
|
||||
LOGGER = get_dist_logger()
|
||||
LOGGER = get_dist_logger('zero_test')
|
||||
|
||||
_ZERO_OPTIMIZER_CONFIG = dict(optimizer_type=torch.optim.Adam, optimizer_config=dict(lr=1e-3))
|
||||
_ZERO_OFFLOAD_OPTIMIZER_CONFIG = dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False)
|
||||
_ZERO_OFFLOAD_PARAM_CONFIG = dict(device='cpu', pin_memory=True, buffer_count=5, buffer_size=1e8, max_in_cpu=1e9)
|
||||
MP_PARALLEL_CONFIG = dict(fp16=dict(mode=None,), parallel=dict(pipeline=dict(size=1), tensor=dict(size=2, mode=None)))
|
||||
|
||||
_ZERO_MODEL_CONFIG = dict(reduce_scatter_bucket_size_mb=25,
|
||||
fp32_reduce_scatter=False,
|
||||
offload_config=None,
|
||||
gradient_predivide_factor=1.0,
|
||||
shard_param=True,
|
||||
use_memory_tracer=False)
|
||||
|
||||
_ZERO_OPTIMIZER_CONFIG = dict(
|
||||
optimizer_class=torch.optim.Adam,
|
||||
cpu_offload=False,
|
||||
initial_scale=2**32,
|
||||
min_scale=1,
|
||||
growth_factor=2,
|
||||
backoff_factor=0.5,
|
||||
growth_interval=1000,
|
||||
hysteresis=2,
|
||||
max_scale=2**32,
|
||||
)
|
||||
|
||||
ZERO_PARALLEL_CONFIG = dict(fp16=dict(mode=None,),
|
||||
zero=dict(
|
||||
optimzer=_ZERO_OPTIMIZER_CONFIG,
|
||||
offload_optimizer_config=_ZERO_OFFLOAD_OPTIMIZER_CONFIG,
|
||||
offload_param_config=_ZERO_OFFLOAD_PARAM_CONFIG,
|
||||
model_config=_ZERO_MODEL_CONFIG,
|
||||
optimizer_config=_ZERO_OPTIMIZER_CONFIG,
|
||||
),
|
||||
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
|
||||
|
||||
|
@ -72,8 +87,8 @@ def check_grads(model, zero_model, loose=False):
|
|||
def check_params(model, zero_model, loose=False):
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
zero_p = zero_p.clone().to(p.device)
|
||||
assert p.dtype == zero_p.dtype
|
||||
assert allclose(p, zero_p, loose=loose)
|
||||
# assert p.dtype == zero_p.dtype
|
||||
assert allclose(p.float(), zero_p.float(), loose=loose), f"diff {p.float() - zero_p.float()}"
|
||||
|
||||
|
||||
def check_grads_padding(model, zero_model, loose=False):
|
||||
|
|
|
@ -19,7 +19,7 @@ def run_dist(rank, world_size, port):
|
|||
# as this model has sync batch normalization
|
||||
# need to configure cudnn deterministic so that
|
||||
# randomness of convolution layers will be disabled
|
||||
zero_config = dict(optimzer=dict(optimizer_type=torch.optim.Adam, optimizer_config=dict(lr=1e-3)))
|
||||
zero_config = dict(optimizer_config=dict(optimizer_class=torch.optim.Adam, lr=1e-3))
|
||||
colossalai.launch(config=dict(zero=zero_config, cudnn_determinstic=True, cudnn_benchmark=False),
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
|
|
|
@ -3,19 +3,22 @@
|
|||
|
||||
import copy
|
||||
from functools import partial
|
||||
from colossalai.zero.sharded_model.sharded_model_v2 import ShardedModelV2
|
||||
import pytest
|
||||
|
||||
import colossalai
|
||||
from colossalai.utils import free_port
|
||||
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from common import check_sharded_params_padding, ZERO_PARALLEL_CONFIG
|
||||
from common import check_sharded_params_padding, ZERO_PARALLEL_CONFIG, MP_PARALLEL_CONFIG, check_params
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=ZERO_PARALLEL_CONFIG,
|
||||
def run_dist(rank, world_size, port, parallel_config):
|
||||
colossalai.launch(config=parallel_config,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host='localhost',
|
||||
|
@ -27,22 +30,21 @@ def run_dist(rank, world_size, port):
|
|||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
||||
|
||||
# adapt to a Callbale with empty parameters
|
||||
# def module_builder_new():
|
||||
# return model_builder(checkpoint=True)
|
||||
|
||||
zero_model = model_builder(checkpoint=True)
|
||||
torch_model = copy.deepcopy(zero_model).cuda()
|
||||
engine, train_dataloader, _, _ = colossalai.initialize(zero_model,
|
||||
colo_model = model_builder(checkpoint=True)
|
||||
torch_model = copy.deepcopy(colo_model).cuda()
|
||||
engine, train_dataloader, _, _ = colossalai.initialize(colo_model,
|
||||
optimizer=optimizer_class,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader)
|
||||
engine.train()
|
||||
torch_optimizer = optimizer_class(torch_model.parameters())
|
||||
|
||||
if dist.get_world_size() > 1:
|
||||
torch_model = DDP(torch_model)
|
||||
|
||||
i = 0
|
||||
for data, label in train_dataloader:
|
||||
if i > 3:
|
||||
if i > 4:
|
||||
break
|
||||
|
||||
data, label = data.cuda(), label.cuda()
|
||||
|
@ -67,15 +69,28 @@ def run_dist(rank, world_size, port):
|
|||
torch_optimizer.step()
|
||||
i += 1
|
||||
|
||||
check_sharded_params_padding(torch_model, zero_model, loose=True)
|
||||
# for torch_param, zero_param in zip(torch_model.parameters(), colo_model.parameters()):
|
||||
# assert torch.allclose(torch_param, zero_param), f"diff {torch_param - zero_param}"
|
||||
|
||||
if parallel_config == MP_PARALLEL_CONFIG:
|
||||
check_params(torch_model, colo_model, loose=True)
|
||||
elif isinstance(colo_model, ShardedModelV2):
|
||||
check_sharded_params_padding(torch_model, colo_model, loose=True)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [2, 4])
|
||||
def test_mp_engine(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=MP_PARALLEL_CONFIG)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [1, 2])
|
||||
def test_zero_init(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
def test_zero_engine(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=ZERO_PARALLEL_CONFIG)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_zero_init(world_size=2)
|
||||
test_zero_engine(world_size=4)
|
Loading…
Reference in New Issue