ColossalAI/tests/test_zero_data_parallel/test_zero_engine.py

97 lines
3.4 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import copy
from functools import partial
from colossalai.zero.sharded_model.sharded_model_v2 import ShardedModelV2
import pytest
import colossalai
from colossalai.utils import free_port
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from tests.components_to_test.registry import non_distributed_component_funcs
from common import check_sharded_params_padding, ZERO_PARALLEL_CONFIG, MP_PARALLEL_CONFIG, check_params
def run_dist(rank, world_size, port, parallel_config):
colossalai.launch(config=parallel_config,
rank=rank,
world_size=world_size,
host='localhost',
port=port,
backend='nccl')
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
colo_model = model_builder(checkpoint=True)
torch_model = copy.deepcopy(colo_model).cuda()
engine, train_dataloader, _, _ = colossalai.initialize(colo_model,
optimizer=optimizer_class,
criterion=criterion,
train_dataloader=train_dataloader)
engine.train()
torch_optimizer = optimizer_class(torch_model.parameters())
if dist.get_world_size() > 1:
torch_model = DDP(torch_model)
i = 0
for data, label in train_dataloader:
if i > 4:
break
data, label = data.cuda(), label.cuda()
engine.zero_grad()
torch_optimizer.zero_grad()
if criterion:
output = engine(data)
loss = engine.criterion(output, label)
torch_output = torch_model(data)
torch_loss = engine.criterion(torch_output, label)
else:
loss = engine(data, label)
torch_loss = torch_model(data, label)
engine.backward(loss)
engine.step()
torch_loss.backward()
torch_optimizer.step()
i += 1
# for torch_param, zero_param in zip(torch_model.parameters(), colo_model.parameters()):
# assert torch.allclose(torch_param, zero_param), f"diff {torch_param - zero_param}"
if parallel_config == MP_PARALLEL_CONFIG:
check_params(torch_model, colo_model, loose=True)
elif isinstance(colo_model, ShardedModelV2):
check_sharded_params_padding(torch_model, colo_model, loose=True)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
def test_mp_engine(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=MP_PARALLEL_CONFIG)
mp.spawn(run_func, nprocs=world_size)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
def test_zero_engine(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=ZERO_PARALLEL_CONFIG)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_zero_engine(world_size=4)