[autoparallel] update_getattr_handler (#2193)

pull/2200/head
YuliangLiu0306 2022-12-26 21:57:39 +08:00 committed by GitHub
parent f10ce01e31
commit 4851f2d607
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 136 additions and 58 deletions

View File

@ -6,6 +6,7 @@ import torch
from torch.fx import symbolic_trace from torch.fx import symbolic_trace
from torch.fx.node import Node from torch.fx.node import Node
from colossalai.auto_parallel.tensor_shard.constants import RESHAPE_FUNC_OP
from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
CommAction, CommAction,
CommType, CommType,
@ -96,27 +97,23 @@ def _solution_annotatation(gm: torch.fx.GraphModule,
# to the same strategy of the user node. # to the same strategy of the user node.
if node.op == 'get_attr': if node.op == 'get_attr':
assert len(target_sharding_specs) == 1, f'sharing weight is not supported in current version.' assert len(target_sharding_specs) == 1, f'sharing weight is not supported in current version.'
new_sharding_spec = target_sharding_specs[0] target_node = node.strategies_vector.successor_nodes[0]
user_strategy = node.strategies_vector.successor_nodes[0].best_strategy node_name = str(node)
op_data_in_user = user_strategy.get_op_data_by_name(str(node)) if target_node.op == 'call_function' and target_node.target in RESHAPE_FUNC_OP:
origin_node_sharding_spec_dict[index] = new_sharding_spec node_name = str(target_node)
target_node = target_node.strategies_vector.successor_nodes[0]
user_strategy = target_node.best_strategy
op_data_in_user = user_strategy.get_op_data_by_name(node_name)
origin_pending_strategy = node.best_strategy origin_pending_strategy = node.best_strategy
origin_op_data = origin_pending_strategy.get_op_data_by_name(str(node)) origin_op_data = origin_pending_strategy.get_op_data_by_name(str(node))
new_sharding_specs = origin_pending_strategy.sharding_specs
new_sharding_specs[origin_op_data] = new_sharding_spec
new_communication_actions = {} new_communication_actions = {}
if op_data_in_user in user_strategy.communication_actions: if op_data_in_user in user_strategy.communication_actions:
new_communication_action = user_strategy.communication_actions.pop(op_data_in_user) new_communication_action = user_strategy.communication_actions.pop(op_data_in_user)
new_communication_action.arg_index = 0 new_communication_action.arg_index = 0
new_communication_actions[origin_op_data] = new_communication_action new_communication_actions[origin_op_data] = new_communication_action
new_strategy = ShardingStrategy(name=str(new_sharding_spec.sharding_sequence), node.best_strategy.communication_actions = new_communication_actions
sharding_specs=new_sharding_specs,
compute_cost=origin_pending_strategy.compute_cost,
communication_cost=origin_pending_strategy.communication_cost,
memory_cost=origin_pending_strategy.memory_cost,
communication_actions=new_communication_actions)
setattr(node, 'best_strategy', new_strategy)
setattr(node, 'sharding_spec', new_sharding_spec)
comm_action_dict = {} comm_action_dict = {}
for op_data, comm_action in node.best_strategy.communication_actions.items(): for op_data, comm_action in node.best_strategy.communication_actions.items():
comm_action_dict[op_data.name] = comm_action comm_action_dict[op_data.name] = comm_action

View File

@ -86,12 +86,7 @@ class NodeHandler(ABC):
if prev_sharding_spec is None: if prev_sharding_spec is None:
return TrainCycleItem(fwd=0, bwd=0, total=0) return TrainCycleItem(fwd=0, bwd=0, total=0)
elif isinstance(prev_sharding_spec, ShardingSpec): elif isinstance(prev_sharding_spec, ShardingSpec):
if isinstance(data, torch.nn.parameter.Parameter): if isinstance(data, torch.Tensor):
# we won't compute the resharding cost for the parameters,
# since the parameters will be sharded before runtime and
# not converted during runtime.
return TrainCycleItem(fwd=0, bwd=0, total=0)
elif isinstance(data, torch.Tensor):
dtype = data.dtype dtype = data.dtype
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size() size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
_, _, consistency_cost = shape_consistency_manager.shape_consistency( _, _, consistency_cost = shape_consistency_manager.shape_consistency(

View File

@ -1,6 +1,12 @@
from typing import List from typing import List
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, ShardingStrategy, TrainCycleItem from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, ShardingStrategy, TrainCycleItem
from colossalai.auto_parallel.tensor_shard.utils import (
enumerate_all_possible_1d_sharding,
enumerate_all_possible_2d_sharding,
ignore_sharding_exception,
)
from colossalai.tensor.sharding_spec import ShardingSpecException
from .strategy_generator import StrategyGenerator from .strategy_generator import StrategyGenerator
@ -37,17 +43,47 @@ class GetattrGenerator(StrategyGenerator):
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost) memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
strategy.memory_cost = memory_cost strategy.memory_cost = memory_cost
@ignore_sharding_exception
def enumerate_all_possible_output(self, mesh_dim_0, mesh_dim_1):
# we check for the output logical shape to get the number of dimensions
dim_partition_list = []
dim_size = len(self.op_data['output'].logical_shape)
# enumerate all the 2D sharding cases
sharding_list_2d = enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, dim_size)
dim_partition_list.extend(sharding_list_2d)
# enumerate all the 1D sharding cases
sharding_list_1d_on_dim_0 = enumerate_all_possible_1d_sharding(mesh_dim_0, dim_size)
dim_partition_list.extend(sharding_list_1d_on_dim_0)
sharding_list_1d_on_dim_1 = enumerate_all_possible_1d_sharding(mesh_dim_1, dim_size)
dim_partition_list.extend(sharding_list_1d_on_dim_1)
# add empty dict for fully replicated case
dim_partition_list.append({})
# sharding strategy bookkeeping
strategy_list = []
# convert these dim partition dict to sharding strategy
for dim_partition_dict in dim_partition_list:
dim_partition_dict_mapping = dict(output=dim_partition_dict)
try:
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
communication_action_mapping = {}
# get name
name = f"get_attr {sharding_spec_mapping['output'].sharding_sequence}"
sharding_strategy = self.get_sharding_strategy(
name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
strategy_list.append(sharding_strategy)
except ShardingSpecException:
continue
return strategy_list
def collate_strategies(self) -> List[ShardingStrategy]: def collate_strategies(self) -> List[ShardingStrategy]:
dim_partition_dict_mapping = { return self.enumerate_all_possible_output(0, 1)
"output": {},
}
communication_action_mapping = {}
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
name = 'Replica Attribute'
strategy = self.get_sharding_strategy(name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
return [strategy]

View File

@ -35,25 +35,59 @@ class AddmmModel(nn.Module):
return x return x
def check_linear_function_handler(rank, input_shape, world_size, port): class AddmmModel_with_param(nn.Module):
def __init__(self, weight_shape, bias_shape):
super().__init__()
self.weight = torch.nn.Parameter(torch.rand(weight_shape))
self.bias = torch.nn.Parameter(torch.rand(bias_shape))
def forward(self, m1):
x = torch.addmm(self.bias, m1, self.weight, beta=3, alpha=2)
return x
def check_addmm_function_handler(rank, input_shape, model_cls, world_size, port):
disable_existing_loggers() disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = AddmmModel().cuda() if model_cls == AddmmModel:
model = AddmmModel().cuda()
else:
model = AddmmModel_with_param(weight_shape=(8, 16), bias_shape=input_shape).cuda()
physical_mesh_id = torch.arange(0, 4) physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2) mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
input = torch.rand(input_shape).cuda() if model_cls == AddmmModel:
m1 = torch.rand(4, 8).cuda() input = torch.rand(input_shape).cuda()
m2 = torch.rand(8, 16).cuda() m1 = torch.rand(4, 8).cuda()
# the index of addmm node in computation graph m2 = torch.rand(8, 16).cuda()
node_index = 4 # construct input args
# strategy number of linear node input_args = [input, m1, m2]
strategy_number = 14 # construct meta arg names
# construct input args meta_arg_names = ['input', 'm1', 'm2']
input_args = [input, m1, m2] meta_args_for_tracer = {}
# construct meta arg names for meta_arg, input_arg in zip(meta_arg_names, input_args):
meta_arg_names = ['input', 'm1', 'm2'] meta_args_for_tracer[meta_arg] = input_arg.to('meta')
# the index of addmm node in computation graph
node_index = 4
# strategy number of linear node
strategy_number = 14
else:
m1 = torch.rand(4, 8).cuda()
# construct input args
input_args = [m1]
# construct meta arg names
meta_arg_names = ['m1']
# the index of addmm node in computation graph
meta_args_for_tracer = {}
for meta_arg, input_arg in zip(meta_arg_names, input_args):
meta_args_for_tracer[meta_arg] = input_arg.to('meta')
node_index = 4
# strategy number of linear node
strategy_number = 14
numerical_test_for_node_strategy(model=model, numerical_test_for_node_strategy(model=model,
device_mesh=device_mesh, device_mesh=device_mesh,
node_index=node_index, node_index=node_index,
@ -73,12 +107,7 @@ def check_linear_function_handler(rank, input_shape, world_size, port):
# %mul_1 : [#users=1] = call_function[target=operator.mul](args = (2, %linear), kwargs = {}) # %mul_1 : [#users=1] = call_function[target=operator.mul](args = (2, %linear), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%mul_1, %mul), kwargs = {}) # %add : [#users=1] = call_function[target=operator.add](args = (%mul_1, %mul), kwargs = {})
# return add # return add
graph = tracer.trace(model, graph = tracer.trace(model, meta_args=meta_args_for_tracer)
meta_args={
"input": torch.rand(input_shape).to('meta'),
'm1': torch.rand(4, 8).to('meta'),
'm2': torch.rand(8, 16).to('meta'),
})
gm = ColoGraphModule(model, graph) gm = ColoGraphModule(model, graph)
# [input_1, m1, m2, addmm, output] # [input_1, m1, m2, addmm, output]
node_list = list(graph.nodes) node_list = list(graph.nodes)
@ -155,11 +184,13 @@ def check_linear_function_handler(rank, input_shape, world_size, port):
@run_on_environment_flag(name='AUTO_PARALLEL') @run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist @pytest.mark.dist
@parameterize('input_shape', [(16,), (4, 16)]) @parameterize('input_shape', [(16,), (4, 16)])
@parameterize('model_cls', [AddmmModel, AddmmModel_with_param])
@rerun_if_address_is_in_use() @rerun_if_address_is_in_use()
def test_addmm_handler(input_shape): def test_addmm_handler(input_shape, model_cls):
world_size = 4 world_size = 4
run_func_function = partial(check_linear_function_handler, run_func_function = partial(check_addmm_function_handler,
input_shape=input_shape, input_shape=input_shape,
model_cls=model_cls,
world_size=world_size, world_size=world_size,
port=free_port()) port=free_port())
mp.spawn(run_func_function, nprocs=world_size) mp.spawn(run_func_function, nprocs=world_size)

View File

@ -39,6 +39,7 @@ def test_getattr_handler():
strategies_vector=getattr_strategies_vector) strategies_vector=getattr_strategies_vector)
getattr_handler.register_strategy(compute_resharding_cost=False) getattr_handler.register_strategy(compute_resharding_cost=False)
# check operation data mapping # check operation data mapping
mapping = getattr_handler.get_operation_data_mapping() mapping = getattr_handler.get_operation_data_mapping()
@ -51,7 +52,15 @@ def test_getattr_handler():
assert mapping['output'].data.shape == torch.Size((16, 4, 3, 3)) assert mapping['output'].data.shape == torch.Size((16, 4, 3, 3))
assert mapping['output'].type == OperationDataType.OUTPUT assert mapping['output'].type == OperationDataType.OUTPUT
strategy_name_list = [val.name for val in getattr_handler.strategies_vector] strategy_name_list = [val.name for val in getattr_handler.strategies_vector]
assert "Replica Attribute" in strategy_name_list assert 'get_attr [S0, S1, R, R]' in strategy_name_list
assert 'get_attr [S1, S0, R, R]' in strategy_name_list
assert 'get_attr [S01, R, R, R]' in strategy_name_list
assert 'get_attr [R, S01, R, R]' in strategy_name_list
assert 'get_attr [S0, R, R, R]' in strategy_name_list
assert 'get_attr [R, S0, R, R]' in strategy_name_list
assert 'get_attr [S1, R, R, R]' in strategy_name_list
assert 'get_attr [R, S1, R, R]' in strategy_name_list
assert 'get_attr [R, R, R, R]' in strategy_name_list
if __name__ == '__main__': if __name__ == '__main__':

View File

@ -149,10 +149,20 @@ def numerical_test_for_node_strategy(model: torch.nn.Module,
param_sharding_spec = strategy_in_use.get_sharding_spec_by_name(param_name) param_sharding_spec = strategy_in_use.get_sharding_spec_by_name(param_name)
else: else:
if 'weight' in name: if 'weight' in name:
param_sharding_spec = list(graph.nodes)[4].sharding_spec param_sharding_spec = None
elif 'bias' in name:
param_sharding_spec = list(graph.nodes)[5].sharding_spec
for node in list(graph.nodes):
if 'weight' in node.name:
param_sharding_spec = node.sharding_spec
elif 'bias' in name:
param_sharding_spec = None
for node in list(graph.nodes):
if 'bias' in node.name:
param_sharding_spec = node.sharding_spec
assert param_sharding_spec is not None
grad_sharded = param_to_shard_dict[name].grad grad_sharded = param_to_shard_dict[name].grad
grad_to_compare = param_to_compare_dict[name].grad grad_to_compare = param_to_compare_dict[name].grad
global_grad = to_global(grad_sharded, param_sharding_spec) global_grad = to_global(grad_sharded, param_sharding_spec)