mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add gpt2 performance test code (#2194)
parent
a3100bd50d
commit
f10ce01e31
|
@ -113,6 +113,7 @@ class GPT2Attention(nn.Module):
|
|||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
||||
|
||||
# query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
||||
qkv = self.c_attn(hidden_states)
|
||||
|
||||
|
@ -187,7 +188,6 @@ class GPT2Model(GPT2PreTrainedModel):
|
|||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
||||
input_shape = input_ids.size()
|
||||
|
@ -196,8 +196,6 @@ class GPT2Model(GPT2PreTrainedModel):
|
|||
|
||||
device = input_ids.device
|
||||
|
||||
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
||||
|
||||
past_length = 0
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
|
||||
|
@ -223,9 +221,6 @@ class GPT2Model(GPT2PreTrainedModel):
|
|||
# add_2
|
||||
hidden_states = inputs_embeds + position_embeds
|
||||
|
||||
token_type_embeds = self.wte(token_type_ids)
|
||||
hidden_states = hidden_states + token_type_embeds
|
||||
|
||||
# comment to run pipeline
|
||||
# add_3
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
|
@ -239,3 +234,46 @@ class GPT2Model(GPT2PreTrainedModel):
|
|||
hidden_states = hidden_states.view(output_shape)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
||||
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.transformer = GPT2Model(config)
|
||||
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
):
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
|
||||
lm_logits = self.lm_head(transformer_outputs)
|
||||
|
||||
return lm_logits
|
||||
|
||||
|
||||
class GPTLMLoss(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
def forward(self, logits, labels):
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
|
|
@ -0,0 +1,159 @@
|
|||
import copy
|
||||
import random
|
||||
from functools import partial
|
||||
from time import time
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import psutil
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import transformers
|
||||
from torch.fx import GraphModule
|
||||
from torch.profiler import ProfilerActivity, profile, record_function, schedule, tensorboard_trace_handler
|
||||
|
||||
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass
|
||||
from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass
|
||||
from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingSpec
|
||||
from colossalai.auto_parallel.tensor_shard.solver import (
|
||||
CostGraph,
|
||||
GraphAnalyser,
|
||||
Solver,
|
||||
SolverOptions,
|
||||
StrategiesConstructor,
|
||||
)
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.initialize import launch, launch_from_torch
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager, to_global
|
||||
from colossalai.testing import assert_close, assert_close_loose, parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_gpt.gpt_modules import GPT2LMHeadModel, GPTLMLoss
|
||||
|
||||
BATCH_SIZE = 128
|
||||
SEQ_LENGTH = 128
|
||||
HIDDEN_DIM = 4096
|
||||
NUM_HEADS = 32
|
||||
NUM_LAYERS = 4
|
||||
VOCAB_SIZE = 50257
|
||||
NUM_STEPS = 10
|
||||
|
||||
|
||||
def get_cpu_mem():
|
||||
return psutil.Process().memory_info().rss / 1024**2
|
||||
|
||||
|
||||
def get_gpu_mem():
|
||||
return torch.cuda.memory_allocated() / 1024**2
|
||||
|
||||
|
||||
def get_mem_info(prefix=''):
|
||||
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
|
||||
|
||||
|
||||
def get_tflops(model_numel, batch_size, seq_len, step_time):
|
||||
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
|
||||
|
||||
|
||||
# Randomly Generated Data
|
||||
def get_data(batch_size, seq_len, vocab_size):
|
||||
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
return input_ids, attention_mask
|
||||
|
||||
|
||||
def main():
|
||||
disable_existing_loggers()
|
||||
launch_from_torch(config={})
|
||||
logger = get_dist_logger()
|
||||
config = transformers.GPT2Config(n_position=SEQ_LENGTH, n_layer=NUM_LAYERS, n_head=NUM_HEADS, n_embd=HIDDEN_DIM)
|
||||
|
||||
model = GPT2LMHeadModel(config=config).to('cuda')
|
||||
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
|
||||
meta_input_sample = {
|
||||
'input_ids': input_ids.to('meta'),
|
||||
'attention_mask': attention_mask.to('meta'),
|
||||
}
|
||||
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
tracer = ColoTracer()
|
||||
|
||||
graph = tracer.trace(root=model, meta_args=meta_input_sample)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
|
||||
graph_analyser = GraphAnalyser(gm)
|
||||
liveness_list = graph_analyser.liveness_analysis()
|
||||
solver_options = SolverOptions()
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
|
||||
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
|
||||
cost_graph.simplify_graph()
|
||||
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=-1)
|
||||
ret = solver.call_solver_serialized_args()
|
||||
|
||||
solution = list(ret[0])
|
||||
print(solution)
|
||||
gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(
|
||||
gm, solution, device_mesh, strategies_constructor)
|
||||
gm = runtime_apply_pass(gm)
|
||||
gm.recompile()
|
||||
# *******************strategy selected*******************
|
||||
print("*******************strategy selected*******************")
|
||||
strategies_list = solution
|
||||
|
||||
nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies]
|
||||
for index, node in enumerate(nodes):
|
||||
print(node.name, node.strategies_vector[strategies_list[index]].name)
|
||||
|
||||
# build criterion
|
||||
criterion = GPTLMLoss()
|
||||
|
||||
optimizer = torch.optim.Adam(gm.parameters(), lr=0.01)
|
||||
numel = sum([p.numel() for p in model.parameters()])
|
||||
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
|
||||
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LENGTH)
|
||||
torch.cuda.synchronize()
|
||||
model.train()
|
||||
# with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
|
||||
# schedule=schedule(wait=1, warmup=2, active=2),
|
||||
# on_trace_ready=tensorboard_trace_handler(f'log/dummy_data/bs128_seq128_new'),
|
||||
# record_shapes=True,
|
||||
# profile_memory=True) as prof:
|
||||
# with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA]) as prof:
|
||||
for n in range(10):
|
||||
# we just use randomly generated data here
|
||||
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LENGTH, VOCAB_SIZE)
|
||||
optimizer.zero_grad()
|
||||
start = time()
|
||||
outputs = gm(input_ids, attn_mask, sharding_spec_dict, origin_spec_dict, comm_actions_dict)
|
||||
loss = criterion(outputs, input_ids)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# prof.step()
|
||||
torch.cuda.synchronize()
|
||||
step_time = time() - start
|
||||
logger.info(
|
||||
f'[{n+1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}',
|
||||
ranks=[0])
|
||||
# print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=10))
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue