|
|
|
@ -58,12 +58,12 @@ class DatasetEvaluator(object):
|
|
|
|
|
[sample["output"] for sample in self.data[category]["data"]]
|
|
|
|
|
|
|
|
|
|
flag = False
|
|
|
|
|
softmaxs = []
|
|
|
|
|
logits = []
|
|
|
|
|
for i, sample in enumerate(self.data[category]["data"]):
|
|
|
|
|
if np.any(np.isnan(np.array(list(sample["softmax_over_choices"].values())))):
|
|
|
|
|
if np.any(np.isnan(np.array(list(sample["logits_over_choices"].values())))):
|
|
|
|
|
if not flag:
|
|
|
|
|
print(
|
|
|
|
|
f"NaN in the softmax, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
|
|
|
|
|
f"NaN in the logits, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
|
|
|
|
|
)
|
|
|
|
|
flag = True
|
|
|
|
|
score = 0
|
|
|
|
@ -79,13 +79,13 @@ class DatasetEvaluator(object):
|
|
|
|
|
score,
|
|
|
|
|
metric_helper.accuracy_by_options(sample["input"], sample["output"], ref),
|
|
|
|
|
)
|
|
|
|
|
softmaxs.append(references[i] if score == 1 else -1)
|
|
|
|
|
logits.append(references[i] if score == 1 else -1)
|
|
|
|
|
else:
|
|
|
|
|
softmaxs.append(np.argmax(np.array(list(sample["softmax_over_choices"].values()))))
|
|
|
|
|
logits.append(np.argmax(np.array(list(sample["logits_over_choices"].values()))))
|
|
|
|
|
|
|
|
|
|
references = np.array(references)
|
|
|
|
|
softmaxs = np.array(softmaxs)
|
|
|
|
|
scores = np.sum(references == softmaxs) / len(self.data[category]["data"]) * 100
|
|
|
|
|
logits = np.array(logits)
|
|
|
|
|
scores = np.sum(references == logits) / len(self.data[category]["data"]) * 100
|
|
|
|
|
|
|
|
|
|
self.evaluation_results[metric][category] = (scores, len(self.data[category]["data"]))
|
|
|
|
|
self.evaluation_results[metric]["ALL"] += scores * weight
|
|
|
|
@ -105,12 +105,12 @@ class DatasetEvaluator(object):
|
|
|
|
|
predictions = [sample["output"] for sample in self.data[category]["data"]]
|
|
|
|
|
|
|
|
|
|
flag = False
|
|
|
|
|
softmaxs = []
|
|
|
|
|
logits = []
|
|
|
|
|
for i, sample in enumerate(self.data[category]["data"]):
|
|
|
|
|
if np.any(np.isnan(np.array(list(sample["softmax_over_choices"].values())))):
|
|
|
|
|
if np.any(np.isnan(np.array(list(sample["logits_over_choices"].values())))):
|
|
|
|
|
if not flag:
|
|
|
|
|
print(
|
|
|
|
|
f"NaN in the softmax, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
|
|
|
|
|
f"NaN in the logits, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
|
|
|
|
|
)
|
|
|
|
|
flag = True
|
|
|
|
|
score = 0
|
|
|
|
@ -121,16 +121,14 @@ class DatasetEvaluator(object):
|
|
|
|
|
sample["output"], ref, all_classes=self.data[category]["inference_kwargs"]["all_classes"]
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
softmaxs.append(references[i] if score == 1 else -1)
|
|
|
|
|
logits.append(references[i] if score == 1 else -1)
|
|
|
|
|
else:
|
|
|
|
|
softmaxs.append(np.argmax(np.array(list(sample["softmax_over_choices"].values()))))
|
|
|
|
|
logits.append(np.argmax(np.array(list(sample["logits_over_choices"].values()))))
|
|
|
|
|
|
|
|
|
|
metric_method = eval("metric_helper." + metric)
|
|
|
|
|
|
|
|
|
|
total_score = 0.0
|
|
|
|
|
for prediction, reference, references_label, softmax in zip(
|
|
|
|
|
predictions, references, references_labels, softmaxs
|
|
|
|
|
):
|
|
|
|
|
for prediction, reference, references_label, softmax in zip(predictions, references, references_labels, logits):
|
|
|
|
|
score = 0.0
|
|
|
|
|
|
|
|
|
|
for ref in reference:
|
|
|
|
|