Fix ColossalEval (#5186)

Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com>
pull/5196/head
Yuanchen 12 months ago committed by GitHub
parent 79718fae04
commit 3ff60d13b0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -58,12 +58,12 @@ class DatasetEvaluator(object):
[sample["output"] for sample in self.data[category]["data"]]
flag = False
softmaxs = []
logits = []
for i, sample in enumerate(self.data[category]["data"]):
if np.any(np.isnan(np.array(list(sample["softmax_over_choices"].values())))):
if np.any(np.isnan(np.array(list(sample["logits_over_choices"].values())))):
if not flag:
print(
f"NaN in the softmax, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
f"NaN in the logits, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
)
flag = True
score = 0
@ -79,13 +79,13 @@ class DatasetEvaluator(object):
score,
metric_helper.accuracy_by_options(sample["input"], sample["output"], ref),
)
softmaxs.append(references[i] if score == 1 else -1)
logits.append(references[i] if score == 1 else -1)
else:
softmaxs.append(np.argmax(np.array(list(sample["softmax_over_choices"].values()))))
logits.append(np.argmax(np.array(list(sample["logits_over_choices"].values()))))
references = np.array(references)
softmaxs = np.array(softmaxs)
scores = np.sum(references == softmaxs) / len(self.data[category]["data"]) * 100
logits = np.array(logits)
scores = np.sum(references == logits) / len(self.data[category]["data"]) * 100
self.evaluation_results[metric][category] = (scores, len(self.data[category]["data"]))
self.evaluation_results[metric]["ALL"] += scores * weight
@ -105,12 +105,12 @@ class DatasetEvaluator(object):
predictions = [sample["output"] for sample in self.data[category]["data"]]
flag = False
softmaxs = []
logits = []
for i, sample in enumerate(self.data[category]["data"]):
if np.any(np.isnan(np.array(list(sample["softmax_over_choices"].values())))):
if np.any(np.isnan(np.array(list(sample["logits_over_choices"].values())))):
if not flag:
print(
f"NaN in the softmax, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
f"NaN in the logits, switch to exact match for category {category} in dataset {self.dataset_name} in model {self.model_name}."
)
flag = True
score = 0
@ -121,16 +121,14 @@ class DatasetEvaluator(object):
sample["output"], ref, all_classes=self.data[category]["inference_kwargs"]["all_classes"]
),
)
softmaxs.append(references[i] if score == 1 else -1)
logits.append(references[i] if score == 1 else -1)
else:
softmaxs.append(np.argmax(np.array(list(sample["softmax_over_choices"].values()))))
logits.append(np.argmax(np.array(list(sample["logits_over_choices"].values()))))
metric_method = eval("metric_helper." + metric)
total_score = 0.0
for prediction, reference, references_label, softmax in zip(
predictions, references, references_labels, softmaxs
):
for prediction, reference, references_label, softmax in zip(predictions, references, references_labels, logits):
score = 0.0
for ref in reference:

@ -116,10 +116,10 @@ class HuggingFaceModel(BaseModel):
shard_config: Shard config for tensor parallel.
"""
model_kwargs.setdefault("torch_dtype", torch.float16)
if "torch_dtype" in model_kwargs:
model_kwargs["torch_dtype"] = eval(model_kwargs["torch_dtype"])
else:
model_kwargs.setdefault("torch_dtype", torch.float16)
if "config" in model_kwargs:
model_kwargs["config"] = AutoConfig.from_pretrained(model_kwargs["config"])
@ -586,11 +586,10 @@ class HuggingFaceCausalLM(HuggingFaceModel):
shard_config: Shard config for tensor parallel.
"""
model_kwargs.setdefault("torch_dtype", torch.float16)
if "torch_dtype" in model_kwargs:
model_kwargs["torch_dtype"] = eval(model_kwargs["torch_dtype"])
else:
model_kwargs.setdefault("torch_dtype", torch.float16)
if "config" in model_kwargs:
model_kwargs["config"] = AutoConfig.from_pretrained(model_kwargs["config"])

Loading…
Cancel
Save