mirror of https://github.com/hpcaitech/ColossalAI
[Inference]Fused the gate and up proj in mlp,and optimized the autograd process. (#5365)
* fused the gate and up proj in mlp * fix code styles * opt auto_grad * rollback test_inference_engine.py * modifications based on the review feedback. * fix bugs in flash attn * Change reshape to view * fix test_rmsnorm_triton.pypull/5348/head
parent
1dedb57747
commit
35382a7fbf
|
@ -115,8 +115,9 @@ class InferenceEngine:
|
|||
tp_group (ProcessGroupMesh, optional): Used to manage the process TP group mesh. Defaults to None.
|
||||
|
||||
Returns:
|
||||
nn.Module: _description_
|
||||
nn.Module: The model optimized by Shardformer.
|
||||
"""
|
||||
|
||||
shardconfig = ShardConfig(
|
||||
tensor_parallel_process_group=tp_group,
|
||||
pipeline_stage_manager=stage_manager,
|
||||
|
@ -149,7 +150,7 @@ class InferenceEngine:
|
|||
Returns:
|
||||
List[str]: Inference result returned by one generation.
|
||||
"""
|
||||
|
||||
with torch.inference_mode():
|
||||
self.generation_config = generation_config
|
||||
if prompts is not None or prompts_token_ids is not None:
|
||||
self.add_request(prompts=prompts, prompts_token_ids=prompts_token_ids)
|
||||
|
|
|
@ -6,7 +6,6 @@ import torch.nn.functional as F
|
|||
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
||||
|
||||
|
||||
@torch.no_grad
|
||||
def copy_to_cache(source, cache, lengths, block_tables, type: str = "prefill"):
|
||||
"""
|
||||
Func: copy key/value into key/value cache.
|
||||
|
@ -41,7 +40,6 @@ def copy_to_cache(source, cache, lengths, block_tables, type: str = "prefill"):
|
|||
return cache
|
||||
|
||||
|
||||
@torch.no_grad
|
||||
def convert_kvcache(cache, lengths, block_tables, pad_id=0):
|
||||
"""
|
||||
Func: convert key/value cache for calculation
|
||||
|
@ -81,7 +79,6 @@ class PagedAttention:
|
|||
"""
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad
|
||||
def pad_and_reshape(tensor, seq_lengths, max_seq_len, num_heads, head_size):
|
||||
"""
|
||||
Transform 1D no_pad tensor into 2D padded tensor with shape [bsz,seq_len,num_heads,head_size]
|
||||
|
@ -97,14 +94,12 @@ class PagedAttention:
|
|||
return padded_tensor
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad
|
||||
def generate_padding_mask(lengths, max_seq_len):
|
||||
range_tensor = torch.arange(max_seq_len).expand(len(lengths), max_seq_len)
|
||||
padding_mask = range_tensor < lengths.unsqueeze(1)
|
||||
return padding_mask
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int = 1) -> torch.Tensor:
|
||||
"""
|
||||
Essential component for MQA. Equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
||||
|
@ -122,7 +117,6 @@ class PagedAttention:
|
|||
return hidden_states.reshape(batch, num_attention_heads, seq_len, head_dim)
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad
|
||||
def nopad_context_forward(
|
||||
q: torch.Tensor, # [num_tokens, num_heads, head_size]
|
||||
k: torch.Tensor, # [num_tokens, num_kv_heads, head_size]
|
||||
|
@ -191,7 +185,6 @@ class PagedAttention:
|
|||
return attn_output
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad
|
||||
def pad_context_forward(
|
||||
q: torch.Tensor, # [batch_size, seq_len, num_heads, head_size]
|
||||
k: torch.Tensor, # [batch_size, seq_len, num_kv_heads, head_size]
|
||||
|
@ -249,7 +242,6 @@ class PagedAttention:
|
|||
return attn_output
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad
|
||||
def pad_decoding_forward(
|
||||
q: torch.Tensor, # [bsz, 1, num_heads, head_size]
|
||||
k: torch.Tensor, # [bsz, 1, num_kv_heads, head_size]
|
||||
|
@ -306,7 +298,6 @@ class PagedAttention:
|
|||
return attn_output
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad
|
||||
def no_pad_decoding_forward(
|
||||
self,
|
||||
q: torch.Tensor, # [num_tokens, num_heads, head_size]
|
||||
|
|
|
@ -32,7 +32,6 @@ except ImportError:
|
|||
logger.warning(f"triton has not been installed yet, we will use torch to complete the attention calculation.")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def llama_causal_lm_forward(
|
||||
self: LlamaForCausalLM,
|
||||
batch: BatchInfo = None,
|
||||
|
@ -58,7 +57,6 @@ def llama_causal_lm_forward(
|
|||
return logits
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def llama_model_forward(
|
||||
self: LlamaModel,
|
||||
batch: BatchInfo = None,
|
||||
|
@ -120,7 +118,6 @@ def llama_model_forward(
|
|||
return hidden_states
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def llama_decoder_layer_forward(
|
||||
self: LlamaDecoderLayer,
|
||||
hidden_states: torch.Tensor,
|
||||
|
@ -139,7 +136,7 @@ def llama_decoder_layer_forward(
|
|||
"""This function will replace the forward function of LlamaDecoderLayer.
|
||||
|
||||
Args:
|
||||
hidden_states (torch.Tensor): input to the layer of shape `(token_num, embed_dim)`.
|
||||
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
|
||||
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
|
||||
storing mapping of token_position_id -> block_id. Defaults to None.
|
||||
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
|
@ -154,8 +151,8 @@ def llama_decoder_layer_forward(
|
|||
norm_output (torch.Tensor, optional): The mid tensor holds the output of layernorm. Defaults to None.
|
||||
sm_scale (int, optional): Used for flash attention. Defaults to None.
|
||||
"""
|
||||
residual = hidden_states
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states, norm_output)
|
||||
# Self Attention
|
||||
hidden_states = self.self_attn(
|
||||
|
@ -240,7 +237,6 @@ class NopadLlamaAttention(LlamaAttention):
|
|||
return attn_layer
|
||||
|
||||
# Replace transformers.models.llama.modeling_llama.LlamaAttention.forward
|
||||
@torch.no_grad()
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
|
@ -258,8 +254,8 @@ class NopadLlamaAttention(LlamaAttention):
|
|||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (torch.Tensor): input to the layer of shape `(token_num, embed_dim)`
|
||||
residual (torch.Tensor): shape `(token_num, embed_dim)`, used to be added to hidden_states in out_proj.
|
||||
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
|
||||
residual (torch.Tensor): shape [token_num, embed_dim], used to be added to hidden_states in out_proj.
|
||||
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
|
||||
storing mapping of token_position_id -> block_id. Defaults to None.
|
||||
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
|
@ -321,7 +317,7 @@ class NopadLlamaAttention(LlamaAttention):
|
|||
sm_scale=sm_scale,
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(-1, self.hidden_size)
|
||||
attn_output = attn_output.view(-1, self.hidden_size)
|
||||
attn_output = torch.addmm(residual, attn_output, self.o_proj.weight)
|
||||
|
||||
return attn_output
|
||||
|
@ -345,9 +341,10 @@ class NopadLlamaMLP(LlamaMLP):
|
|||
mlp_dproj_w (torch.Tensor, optional): The transposed down_proj weight. Defaults to None.
|
||||
"""
|
||||
super().__init__(config)
|
||||
self.gate_proj.weight = Parameter(mlp_gproj_w, requires_grad=False)
|
||||
self.up_proj.weight = Parameter(mlp_uproj_w, requires_grad=False)
|
||||
self.gate_up_weight = Parameter(torch.stack([mlp_gproj_w, mlp_uproj_w], dim=0), requires_grad=False)
|
||||
self.down_proj.weight = Parameter(mlp_dproj_w, requires_grad=False)
|
||||
self.gate_proj = None
|
||||
self.up_proj = None
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: LlamaMLP, *args, **kwargs) -> LlamaMLP:
|
||||
|
@ -371,15 +368,14 @@ class NopadLlamaMLP(LlamaMLP):
|
|||
|
||||
return mlp_layer
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (torch.Tensor): input to the layer of shape `(token_num, embed_dim)`.
|
||||
residual (torch.Tensor): shape `(token_num, embed_dim)`, used to be added to hidden_states in down_proj.
|
||||
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
|
||||
residual (torch.Tensor): shape [token_num, embed_dim], used to be added to hidden_states in down_proj.
|
||||
"""
|
||||
gate_proj_out = torch.mm(hidden_states, self.gate_proj.weight)
|
||||
act_out = torch.nn.functional.silu(gate_proj_out, inplace=True)
|
||||
up_proj_out = torch.mm(hidden_states, self.up_proj.weight)
|
||||
tmp_out = act_out * up_proj_out
|
||||
hidden_states = hidden_states.expand(2, -1, -1)
|
||||
gate_up_proj_out = torch.bmm(hidden_states, self.gate_up_weight)
|
||||
act_out = torch.nn.functional.silu(gate_up_proj_out[0], inplace=True)
|
||||
tmp_out = act_out * gate_up_proj_out[1]
|
||||
return torch.addmm(residual, tmp_out, self.down_proj.weight)
|
||||
|
|
|
@ -0,0 +1,450 @@
|
|||
# This code is adapted from huggingface transformers: https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/llama/modeling_llama.py
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from transformers.models.llama.modeling_llama import (
|
||||
LlamaAttention,
|
||||
LlamaConfig,
|
||||
LlamaDecoderLayer,
|
||||
LlamaForCausalLM,
|
||||
LlamaModel,
|
||||
)
|
||||
|
||||
from colossalai.inference.flash_decoding_utils import FDIntermTensors
|
||||
from colossalai.inference.modeling.layers.attention import PagedAttention
|
||||
from colossalai.inference.struct import BatchInfo
|
||||
from colossalai.kernel.triton import (
|
||||
context_attention_unpadded,
|
||||
copy_kv_to_blocked_cache,
|
||||
flash_decoding_attention,
|
||||
get_xine_cache,
|
||||
rotary_embedding,
|
||||
)
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
from flash_attn.bert_padding import index_first_axis, pad_input # noqa
|
||||
|
||||
logger = get_dist_logger(__name__)
|
||||
|
||||
try:
|
||||
HAS_TRITON = True
|
||||
except ImportError:
|
||||
HAS_TRITON = False
|
||||
logger.warning(f"triton has not been installed yet, we will use torch to complete the attention calculation.")
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2 :]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
def llama_causal_lm_forward(
|
||||
self: LlamaForCausalLM,
|
||||
batch: BatchInfo = None,
|
||||
k_caches: List[torch.Tensor] = None,
|
||||
v_caches: List[torch.Tensor] = None,
|
||||
):
|
||||
"""This function will replace the forward function of LlamaForCausalLM.
|
||||
|
||||
Args:
|
||||
batch (BatchInfo, optional): It stores the necessary input information for this inference. Defaults to None.
|
||||
k_caches (List[torch.Tensor], optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
v_caches (List[torch.Tensor], optional): It holds the GPU memory for the value cache. Defaults to None.
|
||||
"""
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
hidden_states = llama_model_forward(
|
||||
self.model,
|
||||
batch=batch,
|
||||
k_caches=k_caches,
|
||||
v_caches=v_caches,
|
||||
)
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits
|
||||
|
||||
|
||||
def llama_model_forward(
|
||||
self: LlamaModel,
|
||||
batch: BatchInfo = None,
|
||||
k_caches: List[torch.Tensor] = None,
|
||||
v_caches: List[torch.Tensor] = None,
|
||||
):
|
||||
"""This function will replace the forward function of LlamaModel.
|
||||
|
||||
Args:
|
||||
batch (BatchInfo, optional): It stores the necessary input information for this inference.. Defaults to None.
|
||||
k_caches (List[torch.Tensor], optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
v_caches (List[torch.Tensor], optional): It holds the GPU memory for the value cache. Defaults to None.
|
||||
"""
|
||||
input_ids = batch.get_batch_inputs()
|
||||
block_tables = batch.get_block_table_tensor()
|
||||
attention_mask = batch.get_attn_mask()
|
||||
|
||||
if attention_mask is not None:
|
||||
if HAS_TRITON:
|
||||
sequence_lengths = attention_mask.sum(dim=-1, dtype=torch.int32)
|
||||
else:
|
||||
sequence_lengths = batch.get_sequence_lengths()
|
||||
else:
|
||||
sequence_lengths = batch.get_sequence_lengths()
|
||||
|
||||
batch_size, _ = input_ids.shape
|
||||
kv_seq_len = sequence_lengths.max().item()
|
||||
|
||||
if attention_mask is not None:
|
||||
if batch.is_prompts:
|
||||
# Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer.
|
||||
position_ids = generate_padding_position_id(attention_mask)
|
||||
else:
|
||||
position_ids = (attention_mask.sum(dim=-1) - 1).reshape(-1, 1)
|
||||
else:
|
||||
if batch.is_prompts:
|
||||
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=batch.device)
|
||||
position_ids = position_ids.unsqueeze(0)
|
||||
else:
|
||||
position_ids = torch.arange(kv_seq_len - 1, kv_seq_len, dtype=torch.long, device=batch.device)
|
||||
position_ids = position_ids.unsqueeze(0)
|
||||
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
|
||||
cos_sin = get_xine_cache(sequence_lengths, self._cos_cached, self._sin_cached, batch.is_prompts)
|
||||
|
||||
if batch.is_prompts:
|
||||
output_tensor = torch.zeros(
|
||||
(sequence_lengths.sum().item(), batch.num_heads, batch.head_dim), dtype=batch.dtype, device=batch.device
|
||||
)
|
||||
else:
|
||||
output_tensor = torch.zeros(
|
||||
(batch_size, batch.num_heads, batch.head_dim), dtype=batch.dtype, device=batch.device
|
||||
)
|
||||
sm_scale = 1.0 / (batch.head_dim**0.5)
|
||||
|
||||
norm_output = torch.empty_like(hidden_states)
|
||||
|
||||
for layer_id, decoder_layer in enumerate(self.layers):
|
||||
hidden_states = decoder_layer(
|
||||
hidden_states,
|
||||
position_ids=position_ids,
|
||||
block_tables=block_tables,
|
||||
k_cache=k_caches[layer_id],
|
||||
v_cache=v_caches[layer_id],
|
||||
is_prompts=batch.is_prompts,
|
||||
sequence_lengths=sequence_lengths,
|
||||
attention_mask=attention_mask,
|
||||
kv_seq_len=kv_seq_len,
|
||||
cos_sin=cos_sin,
|
||||
fd_inter_tensor=batch.fd_inter_tensor,
|
||||
output_tensor=output_tensor,
|
||||
norm_output=norm_output,
|
||||
sm_scale=sm_scale,
|
||||
)
|
||||
|
||||
if batch.is_prompts:
|
||||
hidden_states = hidden_states[:, -1, :].unsqueeze(dim=1).contiguous()
|
||||
norm_output = torch.empty_like(hidden_states)
|
||||
hidden_states = self.norm(hidden_states.reshape(-1, hidden_states.shape[-1]), norm_output)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
def llama_decoder_layer_forward(
|
||||
self: LlamaDecoderLayer,
|
||||
hidden_states: torch.Tensor,
|
||||
position_ids: torch.LongTensor,
|
||||
block_tables: torch.Tensor = None,
|
||||
k_cache: torch.Tensor = None,
|
||||
v_cache: torch.Tensor = None,
|
||||
is_prompts: bool = True,
|
||||
sequence_lengths: torch.Tensor = None,
|
||||
attention_mask: torch.Tensor = None,
|
||||
kv_seq_len: int = 0,
|
||||
cos_sin: Tuple[torch.Tensor] = None,
|
||||
fd_inter_tensor: FDIntermTensors = None,
|
||||
output_tensor: torch.Tensor = None,
|
||||
norm_output: torch.Tensor = None,
|
||||
sm_scale: int = None,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
"""This function will replace the forward function of LlamaDecoderLayer.
|
||||
|
||||
Args:
|
||||
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
|
||||
position_ids (torch.LongTensor), The position ids of input sequences.
|
||||
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
|
||||
storing mapping of token_position_id -> block_id. Defaults to None.
|
||||
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
v_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
is_prompts (bool, optional): Whether the current inference process is in the context input phase. Defaults to True.
|
||||
sequence_lengths (torch.Tensor, optional): Holding the sequence length of each sequence. Defaults to None.
|
||||
kv_seq_len (int, optional): The max sequence length of input sequences. Defaults to 0.
|
||||
cos_sin (Tuple[torch.Tensor], optional): Holding cos and sin. Defaults to None.
|
||||
fd_inter_tensor (FDIntermTensors, optional): Holding tensors used for storing intermediate values in flash-decoding. Defaults to None.
|
||||
output_tensor (torch.Tensor, optional): The mid tensor holds the output of attention. Defaults to None.
|
||||
norm_output (torch.Tensor, optional): The mid tensor holds the output of layernorm. Defaults to None.
|
||||
sm_scale (int, optional): Used for flash attention. Defaults to None.
|
||||
"""
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states.reshape(-1, hidden_states.shape[-1]), norm_output)
|
||||
# Self Attention
|
||||
hidden_states = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
position_ids=position_ids,
|
||||
block_tables=block_tables,
|
||||
k_cache=k_cache,
|
||||
v_cache=v_cache,
|
||||
is_prompts=is_prompts,
|
||||
sequence_lengths=sequence_lengths,
|
||||
attention_mask=attention_mask,
|
||||
kv_seq_len=kv_seq_len,
|
||||
cos_sin=cos_sin,
|
||||
fd_inter_tensor=fd_inter_tensor,
|
||||
output_tensor=output_tensor,
|
||||
sm_scale=sm_scale,
|
||||
)
|
||||
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states.reshape(-1, hidden_states.shape[-1]), norm_output)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class PadLlamaAttention(LlamaAttention):
|
||||
def __init__(
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
layer_idx: Optional[int] = None,
|
||||
attn_qproj_w: torch.nn.Parameter = None,
|
||||
attn_kproj_w: torch.nn.Parameter = None,
|
||||
attn_vproj_w: torch.nn.Parameter = None,
|
||||
attn_oproj_w: torch.nn.Parameter = None,
|
||||
):
|
||||
"""This layer will replace the LlamaAttention.
|
||||
|
||||
Args:
|
||||
config (LlamaConfig): Holding the Llama model config.
|
||||
layer_idx (Optional[int], optional): The decode layer id of this attention layer. Defaults to None.
|
||||
attn_qproj_w (torch.nn.Parameter, optional): The q_proj weight. Defaults to None.
|
||||
attn_kproj_w (torch.nn.Parameter, optional): The k_proj weight. Defaults to None.
|
||||
attn_vproj_w (torch.nn.Parameter, optional): The v_proj weight. Defaults to None.
|
||||
attn_oproj_w (torch.nn.Parameter, optional): The o_proj weight. Defaults to None.
|
||||
"""
|
||||
super().__init__(config, layer_idx)
|
||||
self.q_proj.weight = attn_qproj_w
|
||||
self.k_proj.weight = attn_kproj_w
|
||||
self.v_proj.weight = attn_vproj_w
|
||||
self.o_proj.weight = attn_oproj_w
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: LlamaAttention, *args, **kwargs) -> LlamaAttention:
|
||||
"""Used for initialize the weight of NopadLlamaAttention by origin LlamaAttention
|
||||
|
||||
Args:
|
||||
module (LlamaAttention): The origin LlamaAttention layer.
|
||||
"""
|
||||
config = module.config
|
||||
layer_idx = module.layer_idx
|
||||
|
||||
attn_qproj_w = module.q_proj.weight
|
||||
attn_kproj_w = module.k_proj.weight
|
||||
attn_vproj_w = module.v_proj.weight
|
||||
attn_oproj_w = module.o_proj.weight
|
||||
|
||||
attn_layer = PadLlamaAttention(
|
||||
config=config,
|
||||
layer_idx=layer_idx,
|
||||
attn_qproj_w=attn_qproj_w,
|
||||
attn_kproj_w=attn_kproj_w,
|
||||
attn_vproj_w=attn_vproj_w,
|
||||
attn_oproj_w=attn_oproj_w,
|
||||
)
|
||||
|
||||
return attn_layer
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_ids: torch.LongTensor,
|
||||
block_tables: torch.Tensor = None,
|
||||
k_cache: torch.Tensor = None,
|
||||
v_cache: torch.Tensor = None,
|
||||
is_prompts: bool = True,
|
||||
sequence_lengths: torch.Tensor = None,
|
||||
attention_mask: torch.Tensor = None,
|
||||
kv_seq_len: int = 0,
|
||||
cos_sin: Tuple[torch.Tensor] = None,
|
||||
fd_inter_tensor: FDIntermTensors = None,
|
||||
output_tensor: torch.Tensor = None,
|
||||
sm_scale: int = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim]
|
||||
position_ids (torch.LongTensor), The position ids of input sequences.
|
||||
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
|
||||
storing mapping of token_position_id -> block_id. Defaults to None.
|
||||
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
v_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
is_prompts (bool, optional): Whether the current inference process is in the context input phase. Defaults to True.
|
||||
sequence_lengths (torch.Tensor, optional): Holding the sequence length of each sequence. Defaults to None.
|
||||
attention_mask (torch.Tensor, optional): The padding mask - corresponds to a tensor of size [batch_size, seq_len]
|
||||
where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens.
|
||||
kv_seq_len (int, optional): The max sequence length of input sequences. Defaults to 0.
|
||||
cos_sin (Tuple[torch.Tensor], optional): Holding cos and sin. Defaults to None.
|
||||
fd_inter_tensor (FDIntermTensors, optional): Holding tensors used for
|
||||
storing intermediate values in flash-decoding. Defaults to None.
|
||||
output_tensor (torch.Tensor, optional): The mid tensor holds the output of attention. Defaults to None.
|
||||
sm_scale (int, optional): Used for flash attention. Defaults to None.
|
||||
"""
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
|
||||
if HAS_TRITON:
|
||||
if is_prompts:
|
||||
if attention_mask is not None:
|
||||
query_states, key_states, value_states, indices = unpading_input(
|
||||
query_states, key_states, value_states, attention_mask
|
||||
)
|
||||
else:
|
||||
query_states = query_states.view(-1, self.num_heads, self.head_dim)
|
||||
key_states = key_states.view(-1, self.num_heads, self.head_dim)
|
||||
value_states = value_states.view(-1, self.num_heads, self.head_dim)
|
||||
else:
|
||||
query_states = query_states.squeeze(dim=1)
|
||||
key_states = key_states.squeeze(dim=1)
|
||||
value_states = value_states.squeeze(dim=1)
|
||||
|
||||
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])
|
||||
|
||||
block_size = k_cache.size(-2)
|
||||
|
||||
if is_prompts:
|
||||
attn_output = context_attention_unpadded(
|
||||
q=query_states,
|
||||
k=key_states,
|
||||
v=value_states,
|
||||
k_cache=k_cache,
|
||||
v_cache=v_cache,
|
||||
context_lengths=sequence_lengths,
|
||||
block_tables=block_tables,
|
||||
block_size=block_size,
|
||||
output=output_tensor,
|
||||
max_seq_len=kv_seq_len,
|
||||
sm_scale=sm_scale,
|
||||
)
|
||||
if attention_mask is not None:
|
||||
attn_output = pad_input(attn_output, indices, bsz, q_len)
|
||||
else:
|
||||
copy_kv_to_blocked_cache(key_states, k_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
|
||||
copy_kv_to_blocked_cache(value_states, v_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
|
||||
attn_output = flash_decoding_attention(
|
||||
q=query_states,
|
||||
k_cache=k_cache,
|
||||
v_cache=v_cache,
|
||||
kv_seq_len=sequence_lengths,
|
||||
block_tables=block_tables,
|
||||
block_size=block_size,
|
||||
max_seq_len_in_batch=kv_seq_len,
|
||||
output=output_tensor,
|
||||
mid_output=fd_inter_tensor.mid_output,
|
||||
mid_output_lse=fd_inter_tensor.mid_output_lse,
|
||||
sm_scale=sm_scale,
|
||||
)
|
||||
attn_output = attn_output.squeeze(1)
|
||||
else:
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
|
||||
if is_prompts:
|
||||
attn_output = PagedAttention.pad_context_forward(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
k_cache,
|
||||
v_cache,
|
||||
sequence_lengths,
|
||||
block_tables,
|
||||
attention_mask,
|
||||
)
|
||||
else:
|
||||
attn_output = PagedAttention.pad_decoding_forward(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
k_cache,
|
||||
v_cache,
|
||||
sequence_lengths,
|
||||
block_tables,
|
||||
attention_mask,
|
||||
)
|
||||
|
||||
attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
return attn_output
|
||||
|
||||
|
||||
def generate_padding_position_id(attention_mask: torch.Tensor) -> torch.Tensor:
|
||||
"""Generate padding position_id through attention mask.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor` of shape [batch_size, sequence_length]:
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The padding position_id.
|
||||
"""
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
return position_ids
|
||||
|
||||
|
||||
def unpading_input(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attention_mask: torch.Tensor):
|
||||
"""Convert padding input to nopad input.
|
||||
|
||||
Args:
|
||||
q (torch.Tensor): [batch_size, q_seq_len, head_num, head_dim]
|
||||
k (torch.Tensor): [batch_size, q_seq_len, head_num, head_dim]
|
||||
v (torch.Tensor): [batch_size, q_seq_len, head_num, head_dim]
|
||||
attention_mask (torch.Tensor): [batch_size, sequence_length]
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor]: The unpad q, k, v and The index of valid data in each batch.
|
||||
|
||||
"""
|
||||
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
||||
batch_size, kv_seq_len, num_key_value_heads, head_dim = q.shape
|
||||
q = index_first_axis(q.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
|
||||
k = index_first_axis(k.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
|
||||
v = index_first_axis(v.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
|
||||
return (q, k, v, indices)
|
|
@ -10,7 +10,7 @@ def greedy_sample(
|
|||
"""
|
||||
Sample tokens greedyly.
|
||||
"""
|
||||
results = torch.argmax(logprobs, dim=-1).cpu()
|
||||
results = torch.argmax(logprobs, dim=-1)
|
||||
return results
|
||||
|
||||
|
||||
|
|
|
@ -220,7 +220,7 @@ def flash_decoding_attention(
|
|||
num_kv_group (int, optional): Number of key/value groups. Defaults to 1.
|
||||
|
||||
Returns:
|
||||
Output tensor with shape [bsz, num_heads, q_len, head_dim]
|
||||
Output tensor with shape [bsz, num_heads, head_dim]
|
||||
"""
|
||||
q = q.squeeze() if q.dim() == 4 else q
|
||||
assert q.dim() == 3, f"Incompatible q dim: {q.dim()}"
|
||||
|
@ -261,6 +261,8 @@ def flash_decoding_attention(
|
|||
# NOTE use `triton.next_power_of_2` here to utilize the cache mechanism of triton
|
||||
# To optimize, revise batching/scheduling to batch 2^n sequences in a batch (preferred)
|
||||
grid = (triton.next_power_of_2(bsz), num_heads, triton.cdiv(triton.next_power_of_2(max_seq_len_in_batch), BLOCK_KV))
|
||||
output = torch.empty((bsz, num_heads, head_dim), dtype=q.dtype, device=q.device) if output is None else output
|
||||
|
||||
_flash_decoding_fwd_kernel[grid](
|
||||
q,
|
||||
k_cache,
|
||||
|
@ -293,8 +295,6 @@ def flash_decoding_attention(
|
|||
HEAD_DIM=head_dim,
|
||||
)
|
||||
|
||||
output = torch.empty((bsz, num_heads, head_dim), dtype=q.dtype, device=q.device) if output is None else output
|
||||
|
||||
grid = (triton.next_power_of_2(bsz), num_heads)
|
||||
|
||||
_flash_decoding_fwd_reduce_kernel[grid](
|
||||
|
|
|
@ -117,7 +117,6 @@ def fused_rotary_emb(
|
|||
)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def fused_rotary_embedding(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
|
|
|
@ -274,7 +274,6 @@ def fused_rotary_embedding_kernel(
|
|||
)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def rotary_embedding(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
|
|
|
@ -49,7 +49,6 @@ if HAS_TRITON:
|
|||
# Write output
|
||||
tl.store(Y + cols, y.to(tl.float16), mask=mask)
|
||||
|
||||
@torch.no_grad()
|
||||
def rms_layernorm(x, weight, eps, norm_output=None):
|
||||
# allocate output
|
||||
y = torch.empty_like(x) if norm_output is None else norm_output
|
||||
|
|
|
@ -77,7 +77,6 @@ def decoding_cache_kernel(
|
|||
)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def get_xine_cache(lengths: torch.Tensor, cos_cache: torch.Tensor, sin_cache: torch.Tensor, is_prompts: bool = False):
|
||||
"""
|
||||
Transform cos/sin cache into no pad sequence, with two different modes.
|
||||
|
|
Loading…
Reference in New Issue