[Fix/Infer] Remove unused deps and revise requirements (#5341)

* remove flash-attn dep

* rm padding llama

* revise infer requirements

* move requirements out of module
pull/5365/head^2
Yuanheng Zhao 2024-02-06 17:27:45 +08:00 committed by GitHub
parent 631862f339
commit 1dedb57747
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 2 additions and 551 deletions

View File

@ -23,8 +23,6 @@ from colossalai.kernel.triton import (
)
from colossalai.logging import get_dist_logger
from flash_attn.bert_padding import index_first_axis, pad_input # noqa
logger = get_dist_logger(__name__)
try:

View File

@ -1,456 +0,0 @@
# This code is adapted from huggingface transformers: https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/llama/modeling_llama.py
from typing import List, Optional, Tuple
import torch
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaConfig,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaModel,
)
from colossalai.inference.flash_decoding_utils import FDIntermTensors
from colossalai.inference.modeling.layers.attention import PagedAttention
from colossalai.inference.struct import BatchInfo
from colossalai.kernel.triton import (
context_attention_unpadded,
copy_kv_to_blocked_cache,
flash_decoding_attention,
get_xine_cache,
rotary_embedding,
)
from colossalai.logging import get_dist_logger
from flash_attn.bert_padding import index_first_axis, pad_input # noqa
logger = get_dist_logger(__name__)
try:
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
logger.warning(f"triton has not been installed yet, we will use torch to complete the attention calculation.")
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
@torch.no_grad()
def llama_causal_lm_forward(
self: LlamaForCausalLM,
batch: BatchInfo = None,
k_caches: List[torch.Tensor] = None,
v_caches: List[torch.Tensor] = None,
):
"""This function will replace the forward function of LlamaForCausalLM.
Args:
batch (BatchInfo, optional): It stores the necessary input information for this inference. Defaults to None.
k_caches (List[torch.Tensor], optional): It holds the GPU memory for the key cache. Defaults to None.
v_caches (List[torch.Tensor], optional): It holds the GPU memory for the value cache. Defaults to None.
"""
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
hidden_states = llama_model_forward(
self.model,
batch=batch,
k_caches=k_caches,
v_caches=v_caches,
)
logits = self.lm_head(hidden_states)
return logits
@torch.no_grad()
def llama_model_forward(
self: LlamaModel,
batch: BatchInfo = None,
k_caches: List[torch.Tensor] = None,
v_caches: List[torch.Tensor] = None,
):
"""This function will replace the forward function of LlamaModel.
Args:
batch (BatchInfo, optional): It stores the necessary input information for this inference.. Defaults to None.
k_caches (List[torch.Tensor], optional): It holds the GPU memory for the key cache. Defaults to None.
v_caches (List[torch.Tensor], optional): It holds the GPU memory for the value cache. Defaults to None.
"""
input_ids = batch.get_batch_inputs()
block_tables = batch.get_block_table_tensor()
attention_mask = batch.get_attn_mask()
if attention_mask is not None:
if HAS_TRITON:
sequence_lengths = attention_mask.sum(dim=-1, dtype=torch.int32)
else:
sequence_lengths = batch.get_sequence_lengths()
else:
sequence_lengths = batch.get_sequence_lengths()
batch_size, _ = input_ids.shape
kv_seq_len = sequence_lengths.max().item()
if attention_mask is not None:
if batch.is_prompts:
# Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer.
position_ids = generate_padding_position_id(attention_mask)
else:
position_ids = (attention_mask.sum(dim=-1) - 1).reshape(-1, 1)
else:
if batch.is_prompts:
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=batch.device)
position_ids = position_ids.unsqueeze(0)
else:
position_ids = torch.arange(kv_seq_len - 1, kv_seq_len, dtype=torch.long, device=batch.device)
position_ids = position_ids.unsqueeze(0)
hidden_states = self.embed_tokens(input_ids)
cos_sin = get_xine_cache(sequence_lengths, self._cos_cached, self._sin_cached, batch.is_prompts)
if batch.is_prompts:
output_tensor = torch.zeros(
(sequence_lengths.sum().item(), batch.num_heads, batch.head_dim), dtype=batch.dtype, device=batch.device
)
else:
output_tensor = torch.zeros(
(batch_size, batch.num_heads, batch.head_dim), dtype=batch.dtype, device=batch.device
)
sm_scale = 1.0 / (batch.head_dim**0.5)
norm_output = torch.empty_like(hidden_states)
for layer_id, decoder_layer in enumerate(self.layers):
hidden_states = decoder_layer(
hidden_states,
position_ids=position_ids,
block_tables=block_tables,
k_cache=k_caches[layer_id],
v_cache=v_caches[layer_id],
is_prompts=batch.is_prompts,
sequence_lengths=sequence_lengths,
attention_mask=attention_mask,
kv_seq_len=kv_seq_len,
cos_sin=cos_sin,
fd_inter_tensor=batch.fd_inter_tensor,
output_tensor=output_tensor,
norm_output=norm_output,
sm_scale=sm_scale,
)
if batch.is_prompts:
hidden_states = hidden_states[:, -1, :].unsqueeze(dim=1).contiguous()
norm_output = torch.empty_like(hidden_states)
hidden_states = self.norm(hidden_states.reshape(-1, hidden_states.shape[-1]), norm_output)
return hidden_states
@torch.no_grad()
def llama_decoder_layer_forward(
self: LlamaDecoderLayer,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
block_tables: torch.Tensor = None,
k_cache: torch.Tensor = None,
v_cache: torch.Tensor = None,
is_prompts: bool = True,
sequence_lengths: torch.Tensor = None,
attention_mask: torch.Tensor = None,
kv_seq_len: int = 0,
cos_sin: Tuple[torch.Tensor] = None,
fd_inter_tensor: FDIntermTensors = None,
output_tensor: torch.Tensor = None,
norm_output: torch.Tensor = None,
sm_scale: int = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""This function will replace the forward function of LlamaDecoderLayer.
Args:
hidden_states (torch.Tensor): _description_
position_ids (torch.LongTensor), The position ids of input sequences.
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
storing mapping of token_position_id -> block_id. Defaults to None.
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
v_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
is_prompts (bool, optional): Whether the current inference process is in the context input phase. Defaults to True.
sequence_lengths (torch.Tensor, optional): Holding the sequence length of each sequence. Defaults to None.
kv_seq_len (int, optional): The max sequence length of input sequences. Defaults to 0.
cos_sin (Tuple[torch.Tensor], optional): Holding cos and sin. Defaults to None.
fd_inter_tensor (FDIntermTensors, optional): Holding tensors used for storing intermediate values in flash-decoding. Defaults to None.
output_tensor (torch.Tensor, optional): The mid tensor holds the output of attention. Defaults to None.
norm_output (torch.Tensor, optional): The mid tensor holds the output of layernorm. Defaults to None.
sm_scale (int, optional): Used for flash attention. Defaults to None.
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states.reshape(-1, hidden_states.shape[-1]), norm_output)
# Self Attention
hidden_states = self.self_attn(
hidden_states=hidden_states,
position_ids=position_ids,
block_tables=block_tables,
k_cache=k_cache,
v_cache=v_cache,
is_prompts=is_prompts,
sequence_lengths=sequence_lengths,
attention_mask=attention_mask,
kv_seq_len=kv_seq_len,
cos_sin=cos_sin,
fd_inter_tensor=fd_inter_tensor,
output_tensor=output_tensor,
sm_scale=sm_scale,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states.reshape(-1, hidden_states.shape[-1]), norm_output)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class PadLlamaAttention(LlamaAttention):
def __init__(
self,
config: LlamaConfig,
layer_idx: Optional[int] = None,
attn_qproj_w: torch.nn.Parameter = None,
attn_kproj_w: torch.nn.Parameter = None,
attn_vproj_w: torch.nn.Parameter = None,
attn_oproj_w: torch.nn.Parameter = None,
):
"""This layer will replace the LlamaAttention.
Args:
config (LlamaConfig): Holding the Llama model config.
layer_idx (Optional[int], optional): The decode layer id of this attention layer. Defaults to None.
attn_qproj_w (torch.nn.Parameter, optional): The q_proj weight. Defaults to None.
attn_kproj_w (torch.nn.Parameter, optional): The k_proj weight. Defaults to None.
attn_vproj_w (torch.nn.Parameter, optional): The v_proj weight. Defaults to None.
attn_oproj_w (torch.nn.Parameter, optional): The o_proj weight. Defaults to None.
"""
super().__init__(config, layer_idx)
self.q_proj.weight = attn_qproj_w
self.k_proj.weight = attn_kproj_w
self.v_proj.weight = attn_vproj_w
self.o_proj.weight = attn_oproj_w
@staticmethod
def from_native_module(module: LlamaAttention, *args, **kwargs) -> LlamaAttention:
"""Used for initialize the weight of NopadLlamaAttention by origin LlamaAttention
Args:
module (LlamaAttention): The origin LlamaAttention layer.
"""
config = module.config
layer_idx = module.layer_idx
attn_qproj_w = module.q_proj.weight
attn_kproj_w = module.k_proj.weight
attn_vproj_w = module.v_proj.weight
attn_oproj_w = module.o_proj.weight
attn_layer = PadLlamaAttention(
config=config,
layer_idx=layer_idx,
attn_qproj_w=attn_qproj_w,
attn_kproj_w=attn_kproj_w,
attn_vproj_w=attn_vproj_w,
attn_oproj_w=attn_oproj_w,
)
return attn_layer
@torch.no_grad()
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
block_tables: torch.Tensor = None,
k_cache: torch.Tensor = None,
v_cache: torch.Tensor = None,
is_prompts: bool = True,
sequence_lengths: torch.Tensor = None,
attention_mask: torch.Tensor = None,
kv_seq_len: int = 0,
cos_sin: Tuple[torch.Tensor] = None,
fd_inter_tensor: FDIntermTensors = None,
output_tensor: torch.Tensor = None,
sm_scale: int = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Args:
hidden_states (torch.Tensor): input to the layer of shape `(token_num, embed_dim)`
position_ids (torch.LongTensor), The position ids of input sequences.
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
storing mapping of token_position_id -> block_id. Defaults to None.
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
v_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
is_prompts (bool, optional): Whether the current inference process is in the context input phase. Defaults to True.
sequence_lengths (torch.Tensor, optional): Holding the sequence length of each sequence. Defaults to None.
attention_mask (torch.Tensor, optional): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)`
where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens.
kv_seq_len (int, optional): The max sequence length of input sequences. Defaults to 0.
cos_sin (Tuple[torch.Tensor], optional): Holding cos and sin. Defaults to None.
fd_inter_tensor (FDIntermTensors, optional): Holding tensors used for
storing intermediate values in flash-decoding. Defaults to None.
output_tensor (torch.Tensor, optional): The mid tensor holds the output of attention. Defaults to None.
sm_scale (int, optional): Used for flash attention. Defaults to None.
"""
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
if HAS_TRITON:
if is_prompts:
if attention_mask is not None:
query_states, key_states, value_states, indices = unpading_input(
query_states, key_states, value_states, attention_mask
)
else:
query_states = query_states.view(-1, self.num_heads, self.head_dim)
key_states = key_states.view(-1, self.num_heads, self.head_dim)
value_states = value_states.view(-1, self.num_heads, self.head_dim)
else:
query_states = query_states.squeeze(dim=1)
key_states = key_states.squeeze(dim=1)
value_states = value_states.squeeze(dim=1)
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])
block_size = k_cache.size(-2)
if is_prompts:
attn_output = context_attention_unpadded(
q=query_states,
k=key_states,
v=value_states,
k_cache=k_cache,
v_cache=v_cache,
context_lengths=sequence_lengths,
block_tables=block_tables,
block_size=block_size,
output=output_tensor,
max_seq_len=kv_seq_len,
sm_scale=sm_scale,
)
if attention_mask is not None:
attn_output = pad_input(attn_output, indices, bsz, q_len)
else:
copy_kv_to_blocked_cache(key_states, k_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
copy_kv_to_blocked_cache(value_states, v_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
attn_output = flash_decoding_attention(
q=query_states,
k_cache=k_cache,
v_cache=v_cache,
kv_seq_len=sequence_lengths,
block_tables=block_tables,
block_size=block_size,
max_seq_len_in_batch=kv_seq_len,
output=output_tensor,
mid_output=fd_inter_tensor.mid_output,
mid_output_lse=fd_inter_tensor.mid_output_lse,
sm_scale=sm_scale,
)
attn_output = attn_output.squeeze(1)
else:
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if is_prompts:
attn_output = PagedAttention.pad_context_forward(
query_states,
key_states,
value_states,
k_cache,
v_cache,
sequence_lengths,
block_tables,
attention_mask,
)
else:
attn_output = PagedAttention.pad_decoding_forward(
query_states,
key_states,
value_states,
k_cache,
v_cache,
sequence_lengths,
block_tables,
attention_mask,
)
attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output
@torch.no_grad()
def generate_padding_position_id(attention_mask: torch.Tensor) -> torch.Tensor:
"""Generate padding position_id through attention mask.
Args:
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
Returns:
torch.Tensor: The padding position_id.
"""
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
return position_ids
@torch.no_grad()
def unpading_input(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attention_mask: torch.Tensor):
"""Convert padding input to nopad input.
Args:
q (torch.Tensor): [batch_size, q_seq_len, head_num, head_dim]
k (torch.Tensor): [batch_size, q_seq_len, head_num, head_dim]
v (torch.Tensor): [batch_size, q_seq_len, head_num, head_dim]
attention_mask (torch.Tensor): [batch_size, sequence_length]
Returns:
Tuple[torch.Tensor]: The unpad q, k, v and The index of valid data in each batch.
"""
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
batch_size, kv_seq_len, num_key_value_heads, head_dim = q.shape
q = index_first_axis(q.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
k = index_first_axis(k.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
v = index_first_axis(v.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
return (q, k, v, indices)

View File

@ -1,9 +1,7 @@
from .nopadding_llama import NoPaddingLlamaModelInferPolicy
from .padding_llama import PaddingLlamaModelInferPolicy
model_policy_map = {
"padding_llama": PaddingLlamaModelInferPolicy,
"nopadding_llama": NoPaddingLlamaModelInferPolicy,
}
__all__ = ["PaddingLlamaModelInferPolicy", "NoPaddingLlamaModelInferPolicy", "model_polic_map"]
__all__ = ["NoPaddingLlamaModelInferPolicy", "model_polic_map"]

View File

@ -1,86 +0,0 @@
from functools import partial
import torch
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, LlamaRMSNorm
from colossalai.inference.modeling.models.padding_llama import (
PadLlamaAttention,
llama_causal_lm_forward,
llama_decoder_layer_forward,
llama_model_forward,
)
from colossalai.inference.utils import init_to_get_rotary
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
# import colossalai
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
try:
from colossalai.kernel.triton import rms_layernorm
HAS_TRITON_RMSNORM = True
except:
print("you should install triton from https://github.com/openai/triton")
HAS_TRITON_RMSNORM = False
def get_triton_rmsnorm_forward():
if HAS_TRITON_RMSNORM:
def _triton_rmsnorm_forward(self: LlamaRMSNorm, hidden_states: torch.Tensor, norm_outpu: torch.Tensor):
return rms_layernorm(hidden_states, self.weight.data, self.variance_epsilon, norm_outpu)
return _triton_rmsnorm_forward
else:
return None
class PaddingLlamaModelInferPolicy(LlamaForCausalLMPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
policy[LlamaDecoderLayer] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn",
target_module=PadLlamaAttention,
),
]
)
self.shard_config._infer()
infer_forward = llama_causal_lm_forward
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LlamaForCausalLM
)
infer_forward = llama_model_forward
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=LlamaModel)
infer_forward = llama_decoder_layer_forward
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LlamaDecoderLayer
)
infer_forward = None
if HAS_TRITON_RMSNORM:
infer_forward = get_triton_rmsnorm_forward()
if infer_forward is not None:
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LlamaRMSNorm
)
return policy
def postprocess(self):
init_to_get_rotary(self.model.model)
return self.model

View File

@ -1,5 +1,2 @@
ordered_set
transformers==4.34.0
auto-gptq==0.5.0
git+https://github.com/ModelTC/lightllm.git@ece7b43f8a6dfa74027adc77c2c176cff28c76c8
git+https://github.com/Dao-AILab/flash-attention.git@017716451d446e464dde9aca3a3c1ed2209caaa9
transformers==4.36.2