mirror of https://github.com/hpcaitech/ColossalAI
[Fix/Infer] Remove unused deps and revise requirements (#5341)
* remove flash-attn dep * rm padding llama * revise infer requirements * move requirements out of modulepull/5365/head^2
parent
631862f339
commit
1dedb57747
@ -1,456 +0,0 @@
|
||||
# This code is adapted from huggingface transformers: https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/llama/modeling_llama.py
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from transformers.models.llama.modeling_llama import (
|
||||
LlamaAttention,
|
||||
LlamaConfig,
|
||||
LlamaDecoderLayer,
|
||||
LlamaForCausalLM,
|
||||
LlamaModel,
|
||||
)
|
||||
|
||||
from colossalai.inference.flash_decoding_utils import FDIntermTensors
|
||||
from colossalai.inference.modeling.layers.attention import PagedAttention
|
||||
from colossalai.inference.struct import BatchInfo
|
||||
from colossalai.kernel.triton import (
|
||||
context_attention_unpadded,
|
||||
copy_kv_to_blocked_cache,
|
||||
flash_decoding_attention,
|
||||
get_xine_cache,
|
||||
rotary_embedding,
|
||||
)
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
from flash_attn.bert_padding import index_first_axis, pad_input # noqa
|
||||
|
||||
logger = get_dist_logger(__name__)
|
||||
|
||||
try:
|
||||
HAS_TRITON = True
|
||||
except ImportError:
|
||||
HAS_TRITON = False
|
||||
logger.warning(f"triton has not been installed yet, we will use torch to complete the attention calculation.")
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2 :]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def llama_causal_lm_forward(
|
||||
self: LlamaForCausalLM,
|
||||
batch: BatchInfo = None,
|
||||
k_caches: List[torch.Tensor] = None,
|
||||
v_caches: List[torch.Tensor] = None,
|
||||
):
|
||||
"""This function will replace the forward function of LlamaForCausalLM.
|
||||
|
||||
Args:
|
||||
batch (BatchInfo, optional): It stores the necessary input information for this inference. Defaults to None.
|
||||
k_caches (List[torch.Tensor], optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
v_caches (List[torch.Tensor], optional): It holds the GPU memory for the value cache. Defaults to None.
|
||||
"""
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
hidden_states = llama_model_forward(
|
||||
self.model,
|
||||
batch=batch,
|
||||
k_caches=k_caches,
|
||||
v_caches=v_caches,
|
||||
)
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def llama_model_forward(
|
||||
self: LlamaModel,
|
||||
batch: BatchInfo = None,
|
||||
k_caches: List[torch.Tensor] = None,
|
||||
v_caches: List[torch.Tensor] = None,
|
||||
):
|
||||
"""This function will replace the forward function of LlamaModel.
|
||||
|
||||
Args:
|
||||
batch (BatchInfo, optional): It stores the necessary input information for this inference.. Defaults to None.
|
||||
k_caches (List[torch.Tensor], optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
v_caches (List[torch.Tensor], optional): It holds the GPU memory for the value cache. Defaults to None.
|
||||
"""
|
||||
input_ids = batch.get_batch_inputs()
|
||||
block_tables = batch.get_block_table_tensor()
|
||||
attention_mask = batch.get_attn_mask()
|
||||
|
||||
if attention_mask is not None:
|
||||
if HAS_TRITON:
|
||||
sequence_lengths = attention_mask.sum(dim=-1, dtype=torch.int32)
|
||||
else:
|
||||
sequence_lengths = batch.get_sequence_lengths()
|
||||
else:
|
||||
sequence_lengths = batch.get_sequence_lengths()
|
||||
|
||||
batch_size, _ = input_ids.shape
|
||||
kv_seq_len = sequence_lengths.max().item()
|
||||
|
||||
if attention_mask is not None:
|
||||
if batch.is_prompts:
|
||||
# Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer.
|
||||
position_ids = generate_padding_position_id(attention_mask)
|
||||
else:
|
||||
position_ids = (attention_mask.sum(dim=-1) - 1).reshape(-1, 1)
|
||||
else:
|
||||
if batch.is_prompts:
|
||||
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=batch.device)
|
||||
position_ids = position_ids.unsqueeze(0)
|
||||
else:
|
||||
position_ids = torch.arange(kv_seq_len - 1, kv_seq_len, dtype=torch.long, device=batch.device)
|
||||
position_ids = position_ids.unsqueeze(0)
|
||||
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
|
||||
cos_sin = get_xine_cache(sequence_lengths, self._cos_cached, self._sin_cached, batch.is_prompts)
|
||||
|
||||
if batch.is_prompts:
|
||||
output_tensor = torch.zeros(
|
||||
(sequence_lengths.sum().item(), batch.num_heads, batch.head_dim), dtype=batch.dtype, device=batch.device
|
||||
)
|
||||
else:
|
||||
output_tensor = torch.zeros(
|
||||
(batch_size, batch.num_heads, batch.head_dim), dtype=batch.dtype, device=batch.device
|
||||
)
|
||||
sm_scale = 1.0 / (batch.head_dim**0.5)
|
||||
|
||||
norm_output = torch.empty_like(hidden_states)
|
||||
|
||||
for layer_id, decoder_layer in enumerate(self.layers):
|
||||
hidden_states = decoder_layer(
|
||||
hidden_states,
|
||||
position_ids=position_ids,
|
||||
block_tables=block_tables,
|
||||
k_cache=k_caches[layer_id],
|
||||
v_cache=v_caches[layer_id],
|
||||
is_prompts=batch.is_prompts,
|
||||
sequence_lengths=sequence_lengths,
|
||||
attention_mask=attention_mask,
|
||||
kv_seq_len=kv_seq_len,
|
||||
cos_sin=cos_sin,
|
||||
fd_inter_tensor=batch.fd_inter_tensor,
|
||||
output_tensor=output_tensor,
|
||||
norm_output=norm_output,
|
||||
sm_scale=sm_scale,
|
||||
)
|
||||
|
||||
if batch.is_prompts:
|
||||
hidden_states = hidden_states[:, -1, :].unsqueeze(dim=1).contiguous()
|
||||
norm_output = torch.empty_like(hidden_states)
|
||||
hidden_states = self.norm(hidden_states.reshape(-1, hidden_states.shape[-1]), norm_output)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def llama_decoder_layer_forward(
|
||||
self: LlamaDecoderLayer,
|
||||
hidden_states: torch.Tensor,
|
||||
position_ids: torch.LongTensor,
|
||||
block_tables: torch.Tensor = None,
|
||||
k_cache: torch.Tensor = None,
|
||||
v_cache: torch.Tensor = None,
|
||||
is_prompts: bool = True,
|
||||
sequence_lengths: torch.Tensor = None,
|
||||
attention_mask: torch.Tensor = None,
|
||||
kv_seq_len: int = 0,
|
||||
cos_sin: Tuple[torch.Tensor] = None,
|
||||
fd_inter_tensor: FDIntermTensors = None,
|
||||
output_tensor: torch.Tensor = None,
|
||||
norm_output: torch.Tensor = None,
|
||||
sm_scale: int = None,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
"""This function will replace the forward function of LlamaDecoderLayer.
|
||||
|
||||
Args:
|
||||
hidden_states (torch.Tensor): _description_
|
||||
position_ids (torch.LongTensor), The position ids of input sequences.
|
||||
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
|
||||
storing mapping of token_position_id -> block_id. Defaults to None.
|
||||
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
v_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
is_prompts (bool, optional): Whether the current inference process is in the context input phase. Defaults to True.
|
||||
sequence_lengths (torch.Tensor, optional): Holding the sequence length of each sequence. Defaults to None.
|
||||
kv_seq_len (int, optional): The max sequence length of input sequences. Defaults to 0.
|
||||
cos_sin (Tuple[torch.Tensor], optional): Holding cos and sin. Defaults to None.
|
||||
fd_inter_tensor (FDIntermTensors, optional): Holding tensors used for storing intermediate values in flash-decoding. Defaults to None.
|
||||
output_tensor (torch.Tensor, optional): The mid tensor holds the output of attention. Defaults to None.
|
||||
norm_output (torch.Tensor, optional): The mid tensor holds the output of layernorm. Defaults to None.
|
||||
sm_scale (int, optional): Used for flash attention. Defaults to None.
|
||||
"""
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states.reshape(-1, hidden_states.shape[-1]), norm_output)
|
||||
# Self Attention
|
||||
hidden_states = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
position_ids=position_ids,
|
||||
block_tables=block_tables,
|
||||
k_cache=k_cache,
|
||||
v_cache=v_cache,
|
||||
is_prompts=is_prompts,
|
||||
sequence_lengths=sequence_lengths,
|
||||
attention_mask=attention_mask,
|
||||
kv_seq_len=kv_seq_len,
|
||||
cos_sin=cos_sin,
|
||||
fd_inter_tensor=fd_inter_tensor,
|
||||
output_tensor=output_tensor,
|
||||
sm_scale=sm_scale,
|
||||
)
|
||||
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states.reshape(-1, hidden_states.shape[-1]), norm_output)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class PadLlamaAttention(LlamaAttention):
|
||||
def __init__(
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
layer_idx: Optional[int] = None,
|
||||
attn_qproj_w: torch.nn.Parameter = None,
|
||||
attn_kproj_w: torch.nn.Parameter = None,
|
||||
attn_vproj_w: torch.nn.Parameter = None,
|
||||
attn_oproj_w: torch.nn.Parameter = None,
|
||||
):
|
||||
"""This layer will replace the LlamaAttention.
|
||||
|
||||
Args:
|
||||
config (LlamaConfig): Holding the Llama model config.
|
||||
layer_idx (Optional[int], optional): The decode layer id of this attention layer. Defaults to None.
|
||||
attn_qproj_w (torch.nn.Parameter, optional): The q_proj weight. Defaults to None.
|
||||
attn_kproj_w (torch.nn.Parameter, optional): The k_proj weight. Defaults to None.
|
||||
attn_vproj_w (torch.nn.Parameter, optional): The v_proj weight. Defaults to None.
|
||||
attn_oproj_w (torch.nn.Parameter, optional): The o_proj weight. Defaults to None.
|
||||
"""
|
||||
super().__init__(config, layer_idx)
|
||||
self.q_proj.weight = attn_qproj_w
|
||||
self.k_proj.weight = attn_kproj_w
|
||||
self.v_proj.weight = attn_vproj_w
|
||||
self.o_proj.weight = attn_oproj_w
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: LlamaAttention, *args, **kwargs) -> LlamaAttention:
|
||||
"""Used for initialize the weight of NopadLlamaAttention by origin LlamaAttention
|
||||
|
||||
Args:
|
||||
module (LlamaAttention): The origin LlamaAttention layer.
|
||||
"""
|
||||
config = module.config
|
||||
layer_idx = module.layer_idx
|
||||
|
||||
attn_qproj_w = module.q_proj.weight
|
||||
attn_kproj_w = module.k_proj.weight
|
||||
attn_vproj_w = module.v_proj.weight
|
||||
attn_oproj_w = module.o_proj.weight
|
||||
|
||||
attn_layer = PadLlamaAttention(
|
||||
config=config,
|
||||
layer_idx=layer_idx,
|
||||
attn_qproj_w=attn_qproj_w,
|
||||
attn_kproj_w=attn_kproj_w,
|
||||
attn_vproj_w=attn_vproj_w,
|
||||
attn_oproj_w=attn_oproj_w,
|
||||
)
|
||||
|
||||
return attn_layer
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_ids: torch.LongTensor,
|
||||
block_tables: torch.Tensor = None,
|
||||
k_cache: torch.Tensor = None,
|
||||
v_cache: torch.Tensor = None,
|
||||
is_prompts: bool = True,
|
||||
sequence_lengths: torch.Tensor = None,
|
||||
attention_mask: torch.Tensor = None,
|
||||
kv_seq_len: int = 0,
|
||||
cos_sin: Tuple[torch.Tensor] = None,
|
||||
fd_inter_tensor: FDIntermTensors = None,
|
||||
output_tensor: torch.Tensor = None,
|
||||
sm_scale: int = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (torch.Tensor): input to the layer of shape `(token_num, embed_dim)`
|
||||
position_ids (torch.LongTensor), The position ids of input sequences.
|
||||
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
|
||||
storing mapping of token_position_id -> block_id. Defaults to None.
|
||||
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
v_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
|
||||
is_prompts (bool, optional): Whether the current inference process is in the context input phase. Defaults to True.
|
||||
sequence_lengths (torch.Tensor, optional): Holding the sequence length of each sequence. Defaults to None.
|
||||
attention_mask (torch.Tensor, optional): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)`
|
||||
where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens.
|
||||
kv_seq_len (int, optional): The max sequence length of input sequences. Defaults to 0.
|
||||
cos_sin (Tuple[torch.Tensor], optional): Holding cos and sin. Defaults to None.
|
||||
fd_inter_tensor (FDIntermTensors, optional): Holding tensors used for
|
||||
storing intermediate values in flash-decoding. Defaults to None.
|
||||
output_tensor (torch.Tensor, optional): The mid tensor holds the output of attention. Defaults to None.
|
||||
sm_scale (int, optional): Used for flash attention. Defaults to None.
|
||||
"""
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
|
||||
if HAS_TRITON:
|
||||
if is_prompts:
|
||||
if attention_mask is not None:
|
||||
query_states, key_states, value_states, indices = unpading_input(
|
||||
query_states, key_states, value_states, attention_mask
|
||||
)
|
||||
else:
|
||||
query_states = query_states.view(-1, self.num_heads, self.head_dim)
|
||||
key_states = key_states.view(-1, self.num_heads, self.head_dim)
|
||||
value_states = value_states.view(-1, self.num_heads, self.head_dim)
|
||||
else:
|
||||
query_states = query_states.squeeze(dim=1)
|
||||
key_states = key_states.squeeze(dim=1)
|
||||
value_states = value_states.squeeze(dim=1)
|
||||
|
||||
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])
|
||||
|
||||
block_size = k_cache.size(-2)
|
||||
|
||||
if is_prompts:
|
||||
attn_output = context_attention_unpadded(
|
||||
q=query_states,
|
||||
k=key_states,
|
||||
v=value_states,
|
||||
k_cache=k_cache,
|
||||
v_cache=v_cache,
|
||||
context_lengths=sequence_lengths,
|
||||
block_tables=block_tables,
|
||||
block_size=block_size,
|
||||
output=output_tensor,
|
||||
max_seq_len=kv_seq_len,
|
||||
sm_scale=sm_scale,
|
||||
)
|
||||
if attention_mask is not None:
|
||||
attn_output = pad_input(attn_output, indices, bsz, q_len)
|
||||
else:
|
||||
copy_kv_to_blocked_cache(key_states, k_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
|
||||
copy_kv_to_blocked_cache(value_states, v_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
|
||||
attn_output = flash_decoding_attention(
|
||||
q=query_states,
|
||||
k_cache=k_cache,
|
||||
v_cache=v_cache,
|
||||
kv_seq_len=sequence_lengths,
|
||||
block_tables=block_tables,
|
||||
block_size=block_size,
|
||||
max_seq_len_in_batch=kv_seq_len,
|
||||
output=output_tensor,
|
||||
mid_output=fd_inter_tensor.mid_output,
|
||||
mid_output_lse=fd_inter_tensor.mid_output_lse,
|
||||
sm_scale=sm_scale,
|
||||
)
|
||||
attn_output = attn_output.squeeze(1)
|
||||
else:
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
|
||||
if is_prompts:
|
||||
attn_output = PagedAttention.pad_context_forward(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
k_cache,
|
||||
v_cache,
|
||||
sequence_lengths,
|
||||
block_tables,
|
||||
attention_mask,
|
||||
)
|
||||
else:
|
||||
attn_output = PagedAttention.pad_decoding_forward(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
k_cache,
|
||||
v_cache,
|
||||
sequence_lengths,
|
||||
block_tables,
|
||||
attention_mask,
|
||||
)
|
||||
|
||||
attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
return attn_output
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def generate_padding_position_id(attention_mask: torch.Tensor) -> torch.Tensor:
|
||||
"""Generate padding position_id through attention mask.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The padding position_id.
|
||||
"""
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
return position_ids
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def unpading_input(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attention_mask: torch.Tensor):
|
||||
"""Convert padding input to nopad input.
|
||||
|
||||
Args:
|
||||
q (torch.Tensor): [batch_size, q_seq_len, head_num, head_dim]
|
||||
k (torch.Tensor): [batch_size, q_seq_len, head_num, head_dim]
|
||||
v (torch.Tensor): [batch_size, q_seq_len, head_num, head_dim]
|
||||
attention_mask (torch.Tensor): [batch_size, sequence_length]
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor]: The unpad q, k, v and The index of valid data in each batch.
|
||||
|
||||
"""
|
||||
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
||||
batch_size, kv_seq_len, num_key_value_heads, head_dim = q.shape
|
||||
q = index_first_axis(q.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
|
||||
k = index_first_axis(k.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
|
||||
v = index_first_axis(v.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
|
||||
return (q, k, v, indices)
|
@ -1,9 +1,7 @@
|
||||
from .nopadding_llama import NoPaddingLlamaModelInferPolicy
|
||||
from .padding_llama import PaddingLlamaModelInferPolicy
|
||||
|
||||
model_policy_map = {
|
||||
"padding_llama": PaddingLlamaModelInferPolicy,
|
||||
"nopadding_llama": NoPaddingLlamaModelInferPolicy,
|
||||
}
|
||||
|
||||
__all__ = ["PaddingLlamaModelInferPolicy", "NoPaddingLlamaModelInferPolicy", "model_polic_map"]
|
||||
__all__ = ["NoPaddingLlamaModelInferPolicy", "model_polic_map"]
|
||||
|
@ -1,86 +0,0 @@
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, LlamaRMSNorm
|
||||
|
||||
from colossalai.inference.modeling.models.padding_llama import (
|
||||
PadLlamaAttention,
|
||||
llama_causal_lm_forward,
|
||||
llama_decoder_layer_forward,
|
||||
llama_model_forward,
|
||||
)
|
||||
from colossalai.inference.utils import init_to_get_rotary
|
||||
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
|
||||
|
||||
# import colossalai
|
||||
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
|
||||
|
||||
try:
|
||||
from colossalai.kernel.triton import rms_layernorm
|
||||
|
||||
HAS_TRITON_RMSNORM = True
|
||||
except:
|
||||
print("you should install triton from https://github.com/openai/triton")
|
||||
HAS_TRITON_RMSNORM = False
|
||||
|
||||
|
||||
def get_triton_rmsnorm_forward():
|
||||
if HAS_TRITON_RMSNORM:
|
||||
|
||||
def _triton_rmsnorm_forward(self: LlamaRMSNorm, hidden_states: torch.Tensor, norm_outpu: torch.Tensor):
|
||||
return rms_layernorm(hidden_states, self.weight.data, self.variance_epsilon, norm_outpu)
|
||||
|
||||
return _triton_rmsnorm_forward
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class PaddingLlamaModelInferPolicy(LlamaForCausalLMPolicy):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
policy = super().module_policy()
|
||||
|
||||
policy[LlamaDecoderLayer] = ModulePolicyDescription(
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn",
|
||||
target_module=PadLlamaAttention,
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
self.shard_config._infer()
|
||||
|
||||
infer_forward = llama_causal_lm_forward
|
||||
method_replacement = {"forward": partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=LlamaForCausalLM
|
||||
)
|
||||
|
||||
infer_forward = llama_model_forward
|
||||
method_replacement = {"forward": partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=LlamaModel)
|
||||
|
||||
infer_forward = llama_decoder_layer_forward
|
||||
method_replacement = {"forward": partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=LlamaDecoderLayer
|
||||
)
|
||||
|
||||
infer_forward = None
|
||||
if HAS_TRITON_RMSNORM:
|
||||
infer_forward = get_triton_rmsnorm_forward()
|
||||
|
||||
if infer_forward is not None:
|
||||
method_replacement = {"forward": partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=LlamaRMSNorm
|
||||
)
|
||||
|
||||
return policy
|
||||
|
||||
def postprocess(self):
|
||||
init_to_get_rotary(self.model.model)
|
||||
return self.model
|
@ -1,5 +1,2 @@
|
||||
ordered_set
|
||||
transformers==4.34.0
|
||||
auto-gptq==0.5.0
|
||||
git+https://github.com/ModelTC/lightllm.git@ece7b43f8a6dfa74027adc77c2c176cff28c76c8
|
||||
git+https://github.com/Dao-AILab/flash-attention.git@017716451d446e464dde9aca3a3c1ed2209caaa9
|
||||
transformers==4.36.2
|
||||
|
Loading…
Reference in new issue