mirror of https://github.com/hpcaitech/ColossalAI
[example] add cifar10 dadaset for diffusion (#1902)
* add cifar10 dadasets * Update README.md Co-authored-by: binmakeswell <binmakeswell@gmail.com>pull/1905/head
parent
ca6e75bc28
commit
351f0f64e6
@ -0,0 +1,123 @@
|
||||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: image
|
||||
cond_stage_key: txt
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1.e-4 ]
|
||||
f_min: [ 1.e-10 ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
from_pretrained: '/data/scratch/diffuser/stable-diffusion-v1-4/unet/diffusion_pytorch_model.bin'
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: False
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
from_pretrained: '/data/scratch/diffuser/stable-diffusion-v1-4/vae/diffusion_pytorch_model.bin'
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
params:
|
||||
use_fp16: True
|
||||
|
||||
data:
|
||||
target: main.DataModuleFromConfig
|
||||
params:
|
||||
batch_size: 4
|
||||
num_workers: 4
|
||||
train:
|
||||
target: ldm.data.cifar10.hf_dataset
|
||||
params:
|
||||
name: cifar10
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 512
|
||||
- target: torchvision.transforms.RandomHorizontalFlip
|
||||
|
||||
lightning:
|
||||
trainer:
|
||||
accelerator: 'gpu'
|
||||
devices: 2
|
||||
log_gpu_memory: all
|
||||
max_epochs: 2
|
||||
precision: 16
|
||||
auto_select_gpus: False
|
||||
strategy:
|
||||
target: pytorch_lightning.strategies.ColossalAIStrategy
|
||||
params:
|
||||
use_chunk: False
|
||||
enable_distributed_storage: True,
|
||||
placement_policy: cuda
|
||||
force_outputs_fp32: False
|
||||
|
||||
log_every_n_steps: 2
|
||||
logger: True
|
||||
default_root_dir: "/tmp/diff_log/"
|
||||
profiler: pytorch
|
||||
|
||||
logger_config:
|
||||
wandb:
|
||||
target: pytorch_lightning.loggers.WandbLogger
|
||||
params:
|
||||
name: nowname
|
||||
save_dir: "/tmp/diff_log/"
|
||||
offline: opt.debug
|
||||
id: nowname
|
@ -0,0 +1,184 @@
|
||||
from typing import Dict
|
||||
import numpy as np
|
||||
from omegaconf import DictConfig, ListConfig
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from pathlib import Path
|
||||
import json
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
from einops import rearrange
|
||||
from ldm.util import instantiate_from_config
|
||||
from datasets import load_dataset
|
||||
|
||||
def make_multi_folder_data(paths, caption_files=None, **kwargs):
|
||||
"""Make a concat dataset from multiple folders
|
||||
Don't suport captions yet
|
||||
If paths is a list, that's ok, if it's a Dict interpret it as:
|
||||
k=folder v=n_times to repeat that
|
||||
"""
|
||||
list_of_paths = []
|
||||
if isinstance(paths, (Dict, DictConfig)):
|
||||
assert caption_files is None, \
|
||||
"Caption files not yet supported for repeats"
|
||||
for folder_path, repeats in paths.items():
|
||||
list_of_paths.extend([folder_path]*repeats)
|
||||
paths = list_of_paths
|
||||
|
||||
if caption_files is not None:
|
||||
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
|
||||
else:
|
||||
datasets = [FolderData(p, **kwargs) for p in paths]
|
||||
return torch.utils.data.ConcatDataset(datasets)
|
||||
|
||||
class FolderData(Dataset):
|
||||
def __init__(self,
|
||||
root_dir,
|
||||
caption_file=None,
|
||||
image_transforms=[],
|
||||
ext="jpg",
|
||||
default_caption="",
|
||||
postprocess=None,
|
||||
return_paths=False,
|
||||
) -> None:
|
||||
"""Create a dataset from a folder of images.
|
||||
If you pass in a root directory it will be searched for images
|
||||
ending in ext (ext can be a list)
|
||||
"""
|
||||
self.root_dir = Path(root_dir)
|
||||
self.default_caption = default_caption
|
||||
self.return_paths = return_paths
|
||||
if isinstance(postprocess, DictConfig):
|
||||
postprocess = instantiate_from_config(postprocess)
|
||||
self.postprocess = postprocess
|
||||
if caption_file is not None:
|
||||
with open(caption_file, "rt") as f:
|
||||
ext = Path(caption_file).suffix.lower()
|
||||
if ext == ".json":
|
||||
captions = json.load(f)
|
||||
elif ext == ".jsonl":
|
||||
lines = f.readlines()
|
||||
lines = [json.loads(x) for x in lines]
|
||||
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
|
||||
else:
|
||||
raise ValueError(f"Unrecognised format: {ext}")
|
||||
self.captions = captions
|
||||
else:
|
||||
self.captions = None
|
||||
|
||||
if not isinstance(ext, (tuple, list, ListConfig)):
|
||||
ext = [ext]
|
||||
|
||||
# Only used if there is no caption file
|
||||
self.paths = []
|
||||
for e in ext:
|
||||
self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
|
||||
if isinstance(image_transforms, ListConfig):
|
||||
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
||||
image_transforms.extend([transforms.ToTensor(),
|
||||
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
||||
image_transforms = transforms.Compose(image_transforms)
|
||||
self.tform = image_transforms
|
||||
|
||||
|
||||
def __len__(self):
|
||||
if self.captions is not None:
|
||||
return len(self.captions.keys())
|
||||
else:
|
||||
return len(self.paths)
|
||||
|
||||
def __getitem__(self, index):
|
||||
data = {}
|
||||
if self.captions is not None:
|
||||
chosen = list(self.captions.keys())[index]
|
||||
caption = self.captions.get(chosen, None)
|
||||
if caption is None:
|
||||
caption = self.default_caption
|
||||
filename = self.root_dir/chosen
|
||||
else:
|
||||
filename = self.paths[index]
|
||||
|
||||
if self.return_paths:
|
||||
data["path"] = str(filename)
|
||||
|
||||
im = Image.open(filename)
|
||||
im = self.process_im(im)
|
||||
data["image"] = im
|
||||
|
||||
if self.captions is not None:
|
||||
data["txt"] = caption
|
||||
else:
|
||||
data["txt"] = self.default_caption
|
||||
|
||||
if self.postprocess is not None:
|
||||
data = self.postprocess(data)
|
||||
|
||||
return data
|
||||
|
||||
def process_im(self, im):
|
||||
im = im.convert("RGB")
|
||||
return self.tform(im)
|
||||
|
||||
def hf_dataset(
|
||||
name,
|
||||
image_transforms=[],
|
||||
image_column="img",
|
||||
label_column="label",
|
||||
text_column="txt",
|
||||
split='train',
|
||||
image_key='image',
|
||||
caption_key='txt',
|
||||
):
|
||||
"""Make huggingface dataset with appropriate list of transforms applied
|
||||
"""
|
||||
ds = load_dataset(name, split=split)
|
||||
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
||||
image_transforms.extend([transforms.ToTensor(),
|
||||
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
||||
tform = transforms.Compose(image_transforms)
|
||||
|
||||
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
|
||||
assert label_column in ds.column_names, f"Didn't find column {label_column} in {ds.column_names}"
|
||||
|
||||
def pre_process(examples):
|
||||
processed = {}
|
||||
processed[image_key] = [tform(im) for im in examples[image_column]]
|
||||
|
||||
label_to_text_dict = {0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer", 5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck"}
|
||||
|
||||
processed[caption_key] = [label_to_text_dict[label] for label in examples[label_column]]
|
||||
|
||||
return processed
|
||||
|
||||
ds.set_transform(pre_process)
|
||||
return ds
|
||||
|
||||
class TextOnly(Dataset):
|
||||
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
|
||||
"""Returns only captions with dummy images"""
|
||||
self.output_size = output_size
|
||||
self.image_key = image_key
|
||||
self.caption_key = caption_key
|
||||
if isinstance(captions, Path):
|
||||
self.captions = self._load_caption_file(captions)
|
||||
else:
|
||||
self.captions = captions
|
||||
|
||||
if n_gpus > 1:
|
||||
# hack to make sure that all the captions appear on each gpu
|
||||
repeated = [n_gpus*[x] for x in self.captions]
|
||||
self.captions = []
|
||||
[self.captions.extend(x) for x in repeated]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.captions)
|
||||
|
||||
def __getitem__(self, index):
|
||||
dummy_im = torch.zeros(3, self.output_size, self.output_size)
|
||||
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
|
||||
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
|
||||
|
||||
def _load_caption_file(self, filename):
|
||||
with open(filename, 'rt') as f:
|
||||
captions = f.readlines()
|
||||
return [x.strip('\n') for x in captions]
|
Loading…
Reference in new issue