mirror of https://github.com/hpcaitech/ColossalAI
[pipeline] Llama causal lm and llama for sequence classification pipeline (#4208)
* bloom policy
* llama pipeline forward and tests
* fix the output and attention_mask
* fix name
* bind argument to policy
* Revert "bloom policy"
This reverts commit 8dee68a0a2
.
This policy should be revert and copied to feature/bloom
* revert the bloom changes
* cancel unneeded inputs
* gpt
* finish llama
* causal lm and sequence classification
* revision
pull/4445/head
parent
1622031058
commit
31bcf867ae
|
@ -162,6 +162,24 @@ class Policy(ABC):
|
|||
|
||||
return policy
|
||||
|
||||
def append_or_create_method_replacement(
|
||||
self, description: Dict[str, Callable], policy: Dict[Union[str, nn.Module], ModulePolicyDescription],
|
||||
target_key: Union[str, nn.Module]) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
||||
r"""
|
||||
Append or create a new method replacement description to the policy for the given key.
|
||||
|
||||
Args:
|
||||
description (Union[SubModuleReplacementDescription, List[SubModuleReplacementDescription]]): the submodule replacement description to be appended
|
||||
policy (Dict[Union[str, nn.Module], ModulePolicyDescription]): the policy to be updated
|
||||
target_key (Union[str, nn.Module]): the key of the policy to be updated
|
||||
"""
|
||||
if target_key in policy:
|
||||
policy[target_key].method_replacement.update(description)
|
||||
else:
|
||||
policy[target_key] = ModulePolicyDescription(method_replacement=description)
|
||||
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
"""Get layers that should be held in current stage. This method should be implemented by subclass.
|
||||
|
||||
|
|
|
@ -131,17 +131,20 @@ class LlamaModelPolicy(LlamaPolicy):
|
|||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
module_policy = super().module_policy()
|
||||
policy = super().module_policy()
|
||||
from transformers.models.llama.modeling_llama import LlamaModel
|
||||
if self.pipeline_stage_manager:
|
||||
# set None as default
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
layers_per_stage = Policy.distribute_layers(len(self.model.layers), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
module_policy[LlamaModel] = ModulePolicyDescription(method_replacement={
|
||||
method_replacement = {
|
||||
'forward': partial(llama_model_forward, stage_manager=stage_manager, stage_index=stage_index)
|
||||
})
|
||||
return module_policy
|
||||
}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=LlamaModel)
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
"""Get pipeline layers for current stage."""
|
||||
|
@ -158,7 +161,7 @@ class LlamaModelPolicy(LlamaPolicy):
|
|||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"""No shared params in bert model"""
|
||||
"""No shared params in llama model"""
|
||||
return []
|
||||
|
||||
|
||||
|
@ -179,8 +182,43 @@ class LlamaForCausalLMPolicy(LlamaPolicy):
|
|||
])
|
||||
}
|
||||
policy.update(new_item)
|
||||
|
||||
if self.pipeline_stage_manager:
|
||||
# set None as default
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
layers_per_stage = Policy.distribute_layers(len(self.model.model.layers), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
'forward': partial(llama_for_causal_lm_forward, stage_manager=stage_manager, stage_index=stage_index)
|
||||
}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=LlamaForCausalLM)
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
"""Get pipeline layers for current stage."""
|
||||
module = self.model
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
held_layers = []
|
||||
layers_per_stage = self.distribute_layers(len(module.model.layers), stage_manager.num_stages)
|
||||
if stage_manager.is_first_stage():
|
||||
held_layers.append(module.model.embed_tokens)
|
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
held_layers.extend(module.model.layers[start_idx:end_idx])
|
||||
if stage_manager.is_last_stage():
|
||||
held_layers.append(module.model.norm)
|
||||
held_layers.append(module.lm_head)
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"""No shared params in llama model"""
|
||||
llama_model = self.model.model
|
||||
if id(llama_model.embed_tokens.weight) == id(self.model.lm_head.weight):
|
||||
# tie weights
|
||||
return [{0: llama_model.embed_tokens.weight, self.stage_manager.num_stages - 1: self.model.lm_head.weight}]
|
||||
return []
|
||||
|
||||
|
||||
class LlamaForSequenceClassificationPolicy(LlamaPolicy):
|
||||
|
||||
|
@ -199,8 +237,42 @@ class LlamaForSequenceClassificationPolicy(LlamaPolicy):
|
|||
])
|
||||
}
|
||||
policy.update(new_item)
|
||||
# to be confirmed
|
||||
if self.pipeline_stage_manager:
|
||||
# set None as default
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
layers_per_stage = Policy.distribute_layers(len(self.model.model.layers), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
'forward':
|
||||
partial(llama_for_sequence_classification_forward,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index)
|
||||
}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=LlamaForSequenceClassification)
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
"""Get pipeline layers for current stage."""
|
||||
module = self.model
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
held_layers = []
|
||||
layers_per_stage = self.distribute_layers(len(module.model.layers), stage_manager.num_stages)
|
||||
if stage_manager.is_first_stage():
|
||||
held_layers.append(module.model.embed_tokens)
|
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
held_layers.extend(module.model.layers[start_idx:end_idx])
|
||||
if stage_manager.is_last_stage():
|
||||
held_layers.append(module.model.norm)
|
||||
held_layers.append(module.score)
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"""No shared params in llama for sequence classification model"""
|
||||
return []
|
||||
|
||||
|
||||
def llama_model_forward(
|
||||
self: LlamaModel,
|
||||
|
|
|
@ -52,7 +52,7 @@ loss_fn_for_gpt2_model = lambda x: x.last_hidden_state.mean()
|
|||
loss_fn = lambda x: x.loss
|
||||
|
||||
config = transformers.GPT2Config(n_layer=2,
|
||||
n_head=2,
|
||||
n_head=4,
|
||||
vocab_size=50258,
|
||||
attn_pdrop=0,
|
||||
embd_pdrop=0,
|
||||
|
|
|
@ -49,21 +49,19 @@ def run_llama_test(enable_fused_normalization, enable_tensor_parallelism, use_la
|
|||
x = torch.randint(0, 1000, (2, 3)).cuda()
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 128)).to(torch.float32).cuda()
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
if name == 'transformers_llama':
|
||||
org_model, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x).cuda()
|
||||
output = sharded_model(input_ids=x, attention_mask=attention_mask)
|
||||
assert output['hidden_states'].shape == (2, 3, 128)
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3)).cuda()
|
||||
output = sharded_model(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
# print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 128)
|
||||
org_model, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x).cuda()
|
||||
output = sharded_model(input_ids=x, attention_mask=attention_mask)
|
||||
assert output['hidden_states'].shape == (2, 3, 128)
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3)).cuda()
|
||||
output = sharded_model(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
assert output[0] is not None
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
|
Loading…
Reference in New Issue