mirror of https://github.com/hpcaitech/ColossalAI
Browse Source
* [autoparallel] refactor the runtime apply pass and add doc string to passes * fix unit test * polishpull/1759/head
YuliangLiu0306
2 years ago
committed by
GitHub
6 changed files with 289 additions and 205 deletions
@ -0,0 +1,151 @@
|
||||
from copy import deepcopy |
||||
from typing import Dict, List |
||||
|
||||
import torch |
||||
from torch.fx.node import Node |
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( |
||||
CommAction, |
||||
CommType, |
||||
OperationData, |
||||
OperationDataType, |
||||
) |
||||
from colossalai.device.device_mesh import DeviceMesh |
||||
from colossalai.tensor.comm_spec import CommSpec |
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager |
||||
|
||||
shape_consistency_manager = ShapeConsistencyManager() |
||||
|
||||
|
||||
def runtime_apply(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int, user_node_index: int): |
||||
""" |
||||
This method will be invoked during runtime to do the shape consistency, which make sure the activations is converted into |
||||
the user node expected form. |
||||
""" |
||||
origin_sharding_spec = origin_dict[node_index] |
||||
target_sharding_spec = input_dict[node_index][user_node_index] |
||||
|
||||
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec) |
||||
|
||||
|
||||
def runtime_comm_spec_apply(tensor: torch.Tensor, comm_actions_dict: Dict, node_index: int, op_data_name: str): |
||||
""" |
||||
This method will be invoked during runtime to apply the comm action following the instruction of comm spec. |
||||
""" |
||||
comm_action = comm_actions_dict[node_index][op_data_name] |
||||
if isinstance(comm_action.comm_spec, CommSpec): |
||||
rst = comm_action.comm_spec.covert_spec_to_action(tensor) |
||||
else: |
||||
origin_sharding_spec = comm_action.comm_spec['src_spec'] |
||||
tgt_sharding_spec = comm_action.comm_spec['tgt_spec'] |
||||
rst = shape_consistency_manager.apply_for_autoparallel_runtime(tensor, origin_sharding_spec, tgt_sharding_spec) |
||||
return rst |
||||
|
||||
|
||||
def _preprocess_graph(nodes: List[Node]): |
||||
""" |
||||
This method is used to extract all the placeholders with sharding information, |
||||
and mapping the nodes into the index of the origin graph. |
||||
""" |
||||
# mapping the node into the origin graph index |
||||
node_to_index_dict = {} |
||||
index = 0 |
||||
for node in nodes: |
||||
if node.target == 'sharding_spec_convert_dict': |
||||
input_dict_node = node |
||||
continue |
||||
if node.target == 'origin_node_sharding_spec_dict': |
||||
origin_dict_node = node |
||||
continue |
||||
if node.target == 'comm_actions_dict': |
||||
comm_actions_dict_node = node |
||||
continue |
||||
if not hasattr(node, 'best_strategy'): |
||||
continue |
||||
node_to_index_dict[node] = index |
||||
index += 1 |
||||
|
||||
return input_dict_node, origin_dict_node, comm_actions_dict_node, node_to_index_dict |
||||
|
||||
|
||||
def _shape_consistency_apply(gm: torch.fx.GraphModule): |
||||
""" |
||||
This pass is used to add the shape consistency node to the origin graph. |
||||
""" |
||||
mod_graph = gm.graph |
||||
nodes = tuple(mod_graph.nodes) |
||||
|
||||
input_dict_node, origin_dict_node, _, node_to_index_dict = _preprocess_graph(nodes) |
||||
|
||||
for node in nodes: |
||||
if not hasattr(node, 'best_strategy') or node.op == 'output': |
||||
continue |
||||
|
||||
for user_node in node.strategies_vector.successor_nodes: |
||||
user_node_index = user_node.strategies_vector.predecessor_nodes.index(node) |
||||
with mod_graph.inserting_before(user_node): |
||||
shape_consistency_node = mod_graph.create_node('call_function', |
||||
runtime_apply, |
||||
args=(node, origin_dict_node, input_dict_node, |
||||
node_to_index_dict[node], user_node_index)) |
||||
|
||||
origin_index_args = user_node.args.index(node) |
||||
new_args = list(user_node.args) |
||||
new_args[origin_index_args] = shape_consistency_node |
||||
user_node.args = new_args |
||||
|
||||
return gm |
||||
|
||||
|
||||
def _comm_spec_apply(gm: torch.fx.GraphModule): |
||||
""" |
||||
This pass is used to add the comm spec apply node to the origin graph. |
||||
""" |
||||
mod_graph = gm.graph |
||||
nodes = tuple(mod_graph.nodes) |
||||
|
||||
_, _, comm_actions_dict_node, node_to_index_dict = _preprocess_graph(nodes) |
||||
|
||||
for node in nodes: |
||||
if not hasattr(node, 'best_strategy') or node.op == 'output': |
||||
continue |
||||
|
||||
comm_actions = node.best_strategy.communication_actions |
||||
for op_data, comm_action in comm_actions.items(): |
||||
comm_object = node.args[comm_action.arg_index] |
||||
if op_data.type == OperationDataType.PARAM: |
||||
continue |
||||
if comm_action.comm_type == CommType.BEFORE: |
||||
with mod_graph.inserting_before(node): |
||||
comm_spec_apply_node = mod_graph.create_node('call_function', |
||||
runtime_comm_spec_apply, |
||||
args=(comm_object, comm_actions_dict_node, |
||||
node_to_index_dict[node], op_data.name)) |
||||
new_args = list(node.args) |
||||
new_args[comm_action.arg_index] = comm_spec_apply_node |
||||
node.args = new_args |
||||
elif comm_action.comm_type == CommType.AFTER: |
||||
with mod_graph.inserting_after(node): |
||||
comm_spec_apply_node = mod_graph.create_node('call_function', |
||||
runtime_comm_spec_apply, |
||||
args=(node, comm_actions_dict_node, |
||||
node_to_index_dict[node], op_data.name)) |
||||
user_list = list(node.users.keys()) |
||||
for user in user_list: |
||||
if user == comm_spec_apply_node: |
||||
continue |
||||
new_args = list(user.args) |
||||
new_args[new_args.index(node)] = comm_spec_apply_node |
||||
user.args = tuple(new_args) |
||||
|
||||
return gm |
||||
|
||||
|
||||
def runtime_apply_pass(gm: torch.fx.GraphModule): |
||||
""" |
||||
The method manages all the passes acting on the distributed training runtime. |
||||
""" |
||||
gm = _shape_consistency_apply(gm) |
||||
gm = _comm_spec_apply(gm) |
||||
|
||||
return gm |
@ -0,0 +1,130 @@
|
||||
from copy import deepcopy |
||||
from typing import List |
||||
|
||||
import torch |
||||
from torch.fx import symbolic_trace |
||||
from torch.fx.node import Node |
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import CommAction, CommType, OperationDataType |
||||
from colossalai.device.device_mesh import DeviceMesh |
||||
from colossalai.tensor.comm_spec import _all_reduce |
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager |
||||
from colossalai.tensor.sharding_spec import ShardingSpec |
||||
|
||||
shape_consistency_manager = ShapeConsistencyManager() |
||||
|
||||
|
||||
def _solution_annotatation(gm: torch.fx.GraphModule, solution: List[int]): |
||||
""" |
||||
This method is used to stick the solution strategy to the nodes and add the information |
||||
required in runtime into graph as placeholder nodes. |
||||
""" |
||||
mod_graph = gm.graph |
||||
nodes = tuple(mod_graph.nodes) |
||||
|
||||
# the dict to get origin sharding spec of node |
||||
origin_node_sharding_spec_dict = {} |
||||
for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)): |
||||
strategies_vector = node.strategies_vector |
||||
# stick the solution strategy to the corresponding node |
||||
setattr(node, 'best_strategy', strategies_vector[strategy_index]) |
||||
setattr(node, 'sharding_spec', strategies_vector[strategy_index].get_sharding_spec_by_name(str(node))) |
||||
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name( |
||||
str(node)) |
||||
|
||||
# the dict to get input sharding specs of user node |
||||
sharding_spec_convert_dict = {} |
||||
# the dict to record comm actions of nodes |
||||
comm_actions_dict = {} |
||||
for index, node in enumerate(nodes): |
||||
target_sharding_specs = [] |
||||
for user_node in node.strategies_vector.successor_nodes: |
||||
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name)) |
||||
target_sharding_specs.append(target_sharding_spec) |
||||
sharding_spec_convert_dict[index] = target_sharding_specs |
||||
|
||||
comm_action_dict = {} |
||||
for op_data, comm_action in node.best_strategy.communication_actions.items(): |
||||
comm_action_dict[op_data.name] = comm_action |
||||
comm_actions_dict[index] = comm_action_dict |
||||
|
||||
# add above dicts into graph |
||||
for node in nodes: |
||||
if node.op != 'placeholder': |
||||
with mod_graph.inserting_before(node): |
||||
input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict') |
||||
origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict') |
||||
comm_actions_dict_node = mod_graph.create_node('placeholder', target='comm_actions_dict') |
||||
break |
||||
return gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict |
||||
|
||||
|
||||
def _module_params_sharding(gm: torch.fx.GraphModule, device_mesh): |
||||
""" |
||||
Apply the sharding action to the module parameters and buffers following the |
||||
instructions of solver solution. |
||||
""" |
||||
mod_graph = gm.graph |
||||
nodes = tuple(mod_graph.nodes) |
||||
|
||||
for node in nodes: |
||||
if node.op == 'call_module': |
||||
target_module = node.graph.owning_module.get_submodule(node.target) |
||||
|
||||
for name, param in target_module.named_parameters(): |
||||
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) |
||||
# apply the sharding spec of parameters |
||||
if target_sharding_spec.dim_partition_dict != {}: |
||||
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {}) |
||||
setattr(param, 'sharding_spec', origin_sharding_spec) |
||||
param_sharded = torch.nn.Parameter( |
||||
shape_consistency_manager.apply_for_autoparallel_runtime(param.data, param.sharding_spec, |
||||
target_sharding_spec).detach().clone()) |
||||
else: |
||||
param_sharded = param |
||||
setattr(target_module, name, param_sharded) |
||||
comm_actions = node.best_strategy.communication_actions |
||||
for operation_data, comm_action in comm_actions.items(): |
||||
comm_spec_to_use = comm_action.comm_spec |
||||
# register hook to the parameters |
||||
if operation_data.type == OperationDataType.PARAM and operation_data.name == name and comm_action.comm_type == CommType.HOOK: |
||||
|
||||
def wrapper(param, comm_spec): |
||||
|
||||
def hook_fn(grad): |
||||
_all_reduce(grad, comm_spec) |
||||
|
||||
param.register_hook(hook_fn) |
||||
|
||||
wrapper(param_sharded, comm_spec_to_use) |
||||
|
||||
sharded_buffer_dict = {} |
||||
# apply the sharding spec of buffers |
||||
for name, buffer in target_module.named_buffers(): |
||||
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {}) |
||||
setattr(buffer, 'sharding_spec', origin_sharding_spec) |
||||
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) |
||||
buffer_sharded = shape_consistency_manager.apply(buffer, target_sharding_spec) |
||||
sharded_buffer_dict[name] = buffer_sharded |
||||
|
||||
for name, buffer_sharded in sharded_buffer_dict.items(): |
||||
setattr(target_module, name, buffer_sharded.detach().clone()) |
||||
|
||||
return gm |
||||
|
||||
|
||||
def implicit_comm_action_apply(gm: torch.fx.GraphModule): |
||||
""" |
||||
replace the origin kernel into kernel with implicit communication inside. |
||||
""" |
||||
pass |
||||
|
||||
|
||||
def runtime_preparation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh: DeviceMesh): |
||||
gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict = _solution_annotatation( |
||||
gm, solution) |
||||
# TODO: the pass below should be uncommented after the implementation of implicit_comm_action_apply_pass completed. |
||||
# gm = implicit_comm_action_apply(gm) |
||||
gm = _module_params_sharding(gm, device_mesh) |
||||
|
||||
return gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict |
@ -1,193 +0,0 @@
|
||||
import builtins |
||||
import copy |
||||
import operator |
||||
from ast import NodeTransformer |
||||
from copy import deepcopy |
||||
from typing import List |
||||
|
||||
import torch |
||||
from torch.fx import symbolic_trace |
||||
from torch.fx.node import Node |
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import CommAction, CommType, OperationDataType |
||||
from colossalai.device.device_mesh import DeviceMesh |
||||
from colossalai.fx.passes.split_module import split_module |
||||
from colossalai.tensor.comm_spec import CollectiveCommPattern, CommSpec, _all_reduce, pattern_to_func_dict |
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager |
||||
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec |
||||
|
||||
shape_consistency_manager = ShapeConsistencyManager() |
||||
|
||||
|
||||
def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index): |
||||
origin_sharding_spec = origin_dict[node_index] |
||||
target_sharding_spec = input_dict[node_index][user_node_index] |
||||
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec) |
||||
|
||||
|
||||
def runtime_comm_spec_apply(tensor, comm_actions_dict, node_index, op_data): |
||||
|
||||
comm_action = comm_actions_dict[node_index][op_data] |
||||
if isinstance(comm_action.comm_spec, CommSpec): |
||||
rst = comm_action.comm_spec.covert_spec_to_action(tensor) |
||||
else: |
||||
origin_sharding_spec = comm_action.comm_spec['src_spec'] |
||||
tgt_sharding_spec = comm_action.comm_spec['tgt_spec'] |
||||
rst = shape_consistency_manager.apply_for_autoparallel_runtime(tensor, origin_sharding_spec, tgt_sharding_spec) |
||||
return rst |
||||
|
||||
|
||||
def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh): |
||||
mod_graph = gm.graph |
||||
nodes = tuple(mod_graph.nodes) |
||||
|
||||
# the dict to get origin sharding spec of node |
||||
origin_node_sharding_spec_dict = {} |
||||
for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)): |
||||
strategies_vector = node.strategies_vector |
||||
setattr(node, 'best_strategy', strategies_vector[strategy_index]) |
||||
setattr(node, 'sharding_spec', strategies_vector[strategy_index].get_sharding_spec_by_name(str(node))) |
||||
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name( |
||||
str(node)) |
||||
|
||||
# apply the sharding spec of parameters |
||||
for node in nodes: |
||||
if node.op == 'call_module': |
||||
target_module = node.graph.owning_module.get_submodule(node.target) |
||||
for name, param in target_module.named_parameters(): |
||||
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) |
||||
if target_sharding_spec.dim_partition_dict != {}: |
||||
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {}) |
||||
setattr(param, 'sharding_spec', origin_sharding_spec) |
||||
param_sharded = torch.nn.Parameter( |
||||
shape_consistency_manager.apply_for_autoparallel_runtime(param.data, param.sharding_spec, |
||||
target_sharding_spec).detach().clone()) |
||||
else: |
||||
param_sharded = param |
||||
setattr(target_module, name, param_sharded) |
||||
comm_actions = node.best_strategy.communication_actions |
||||
for operation_data, comm_action in comm_actions.items(): |
||||
comm_spec_to_use = comm_action.comm_spec |
||||
if operation_data.type == OperationDataType.PARAM and operation_data.name == name and comm_action.comm_type == CommType.HOOK: |
||||
|
||||
def wrapper(param, comm_spec): |
||||
|
||||
def hook_fn(grad): |
||||
_all_reduce(grad, comm_spec) |
||||
|
||||
param.register_hook(hook_fn) |
||||
|
||||
wrapper(param_sharded, comm_spec_to_use) |
||||
|
||||
sharded_buffer_dict = {} |
||||
for name, buffer in target_module.named_buffers(): |
||||
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {}) |
||||
setattr(buffer, 'sharding_spec', origin_sharding_spec) |
||||
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) |
||||
buffer_sharded = shape_consistency_manager.apply(buffer, target_sharding_spec) |
||||
sharded_buffer_dict[name] = buffer_sharded |
||||
|
||||
for name, buffer_sharded in sharded_buffer_dict.items(): |
||||
setattr(target_module, name, buffer_sharded.detach().clone()) |
||||
|
||||
# the dict to get input sharding specs of user node |
||||
sharding_spec_convert_dict = {} |
||||
for index, node in enumerate(nodes): |
||||
target_sharding_specs = [] |
||||
for user_node in node.strategies_vector.successor_nodes: |
||||
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name)) |
||||
target_sharding_specs.append(target_sharding_spec) |
||||
sharding_spec_convert_dict[index] = target_sharding_specs |
||||
|
||||
# the dict to record comm actions of nodes |
||||
comm_actions_dict = {} |
||||
for index, node in enumerate(nodes): |
||||
comm_action_dict = {} |
||||
for op_data, comm_action in node.best_strategy.communication_actions.items(): |
||||
comm_action_dict[op_data.name] = comm_action |
||||
comm_actions_dict[index] = comm_action_dict |
||||
|
||||
# add above dicts into graph |
||||
for node in nodes: |
||||
if node.op != 'placeholder': |
||||
with mod_graph.inserting_before(node): |
||||
input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict') |
||||
origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict') |
||||
comm_actions_dict_node = mod_graph.create_node('placeholder', target='comm_actions_dict') |
||||
break |
||||
|
||||
return sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict |
||||
|
||||
|
||||
def shape_consistency_pass(gm: torch.fx.GraphModule): |
||||
mod_graph = gm.graph |
||||
nodes = tuple(mod_graph.nodes) |
||||
input_dict_node = None |
||||
origin_dict_node = None |
||||
|
||||
# mapping the node into the origin graph index |
||||
node_to_index_dict = {} |
||||
index = 0 |
||||
for node in nodes: |
||||
if node.target == 'sharding_spec_convert_dict': |
||||
input_dict_node = node |
||||
continue |
||||
if node.target == 'origin_node_sharding_spec_dict': |
||||
origin_dict_node = node |
||||
continue |
||||
if node.target == 'comm_actions_dict': |
||||
comm_actions_dict_node = node |
||||
continue |
||||
if not hasattr(node, 'best_strategy'): |
||||
continue |
||||
node_to_index_dict[node] = index |
||||
index += 1 |
||||
assert input_dict_node is not None |
||||
|
||||
# add shape consistency apply function into graph |
||||
for node in nodes: |
||||
if not hasattr(node, 'best_strategy') or node.op == 'output': |
||||
continue |
||||
|
||||
for user_node in node.strategies_vector.successor_nodes: |
||||
user_node_index = user_node.strategies_vector.predecessor_nodes.index(node) |
||||
with mod_graph.inserting_before(user_node): |
||||
shape_consistency_node = mod_graph.create_node('call_function', |
||||
runtime_apply, |
||||
args=(node, origin_dict_node, input_dict_node, |
||||
node_to_index_dict[node], user_node_index)) |
||||
|
||||
origin_index_args = user_node.args.index(node) |
||||
new_args = list(user_node.args) |
||||
new_args[origin_index_args] = shape_consistency_node |
||||
user_node.args = new_args |
||||
|
||||
comm_actions = node.best_strategy.communication_actions |
||||
for op_data, comm_action in comm_actions.items(): |
||||
comm_object = node.args[comm_action.arg_index] |
||||
if op_data.type == OperationDataType.PARAM: |
||||
continue |
||||
if comm_action.comm_type == CommType.BEFORE: |
||||
with mod_graph.inserting_before(node): |
||||
comm_spec_apply_node = mod_graph.create_node('call_function', |
||||
runtime_comm_spec_apply, |
||||
args=(comm_object, comm_actions_dict_node, |
||||
node_to_index_dict[node], op_data.name)) |
||||
new_args = list(node.args) |
||||
new_args[comm_action.arg_index] = comm_spec_apply_node |
||||
node.args = new_args |
||||
elif comm_action.comm_type == CommType.AFTER: |
||||
with mod_graph.inserting_after(node): |
||||
comm_spec_apply_node = mod_graph.create_node('call_function', |
||||
runtime_comm_spec_apply, |
||||
args=(node, comm_actions_dict_node, |
||||
node_to_index_dict[node], op_data.name)) |
||||
user_list = list(node.users.keys()) |
||||
for user in user_list: |
||||
if user == comm_spec_apply_node: |
||||
continue |
||||
new_args = list(user.args) |
||||
new_args[new_args.index(node)] = comm_spec_apply_node |
||||
user.args = tuple(new_args) |
||||
# TODO: consider other OperationDataType, such as OperationDataType.OUTPUT |
||||
return gm |
Loading…
Reference in new issue