[autoparallel] added binary elementwise node handler (#1758)

* [autoparallel] added binary elementwise node handler

* polish code
pull/1759/head
Frank Lee 2022-10-25 14:32:01 +08:00 committed by GitHub
parent d2fc067231
commit f9a613d660
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 395 additions and 8 deletions

View File

@ -1,6 +1,7 @@
import torch
import operator
import torch
__all__ = [
'ELEMENTWISE_MODULE_OP', 'ELEMENTWISE_FUNC_OP', 'RESHAPE_FUNC_OP', 'CONV_MODULE_OP', 'CONV_FUNC_OP',
'LINEAR_MODULE_OP', 'LINEAR_FUNC_OP', 'BATCHNORM_MODULE_OP', 'POOL_MODULE_OP', 'NON_PARAM_FUNC_OP', 'BCAST_FUNC_OP',
@ -35,7 +36,7 @@ RESHAPE_METHOD_OP = [
]
BCAST_FUNC_OP = [
torch.add, torch.sub, torch.mul, torch.div, torch.floor_divide, torch.true_divide, operator.add, operator.sub,
operator.mul, operator.floordiv, operator.truediv, torch.matmul, torch.where, operator.pow, torch.pow, torch.tanh
operator.mul, operator.floordiv, operator.truediv, torch.matmul, operator.pow, torch.pow
]
CONV_MODULE_OP = [
torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d, torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d,

View File

@ -1,4 +1,5 @@
from .batch_norm_handler import BatchNormModuleHandler
from .binary_elementwise_handler import BinaryElementwiseHandler
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
from .conv_handler import ConvFunctionHandler, ConvModuleHandler
from .layer_norm_handler import LayerNormModuleHandler
@ -15,5 +16,5 @@ __all__ = [
'LinearFunctionHandler', 'LinearModuleHandler', 'BMMFunctionHandler', 'AddBMMFunctionHandler',
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler',
'NormPoolingHandler', 'operator_registry'
'NormPoolingHandler', 'BinaryElementwiseHandler', 'operator_registry'
]

View File

@ -0,0 +1,86 @@
from typing import Dict, List, Union
import torch
from torch.fx.node import Node
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, ShardingStrategy
from ..constants import BCAST_FUNC_OP
from ..utils import recover_sharding_spec_for_broadcast_shape
from .node_handler import NodeHandler
from .registry import operator_registry
from .strategy import BinaryElementwiseStrategyGenerator, StrategyGenerator
__all__ = ['BinaryElementwiseHandler']
@operator_registry.register(BCAST_FUNC_OP)
class BinaryElementwiseHandler(NodeHandler):
"""
An BinaryBcastOpHandler is a node handler which deals with operations which have two
operands and broadcasting occurs such as torch.add.
"""
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
bcast_shape = self.node._meta_data.shape
def _get_op_data_type(tensor):
if isinstance(tensor, torch.nn.parameter.Parameter):
return OperationDataType.PARAM
else:
return OperationDataType.ARG
def _get_arg_value(idx):
if isinstance(self.node.args[idx], Node):
meta_data = self.node.args[idx]._meta_data
else:
# this is in fact a real data like int 1
# but we can deem it as meta data
# as it won't affect the strategy generation
assert isinstance(self.node.args[idx], (int, float))
meta_data = torch.Tensor([self.node.args[idx]]).to('meta')
return meta_data
input_meta_data = _get_arg_value(0)
other_meta_data = _get_arg_value(1)
output_meta_data = self.node._meta_data
input_op_data = OperationData(name=str(self.node.args[0]),
type=_get_op_data_type(input_meta_data),
data=input_meta_data,
logical_shape=bcast_shape)
other_op_data = OperationData(name=str(self.node.args[1]),
type=_get_op_data_type(other_meta_data),
data=other_meta_data,
logical_shape=bcast_shape)
output_op_data = OperationData(name=str(self.node),
type=OperationDataType.OUTPUT,
data=output_meta_data,
logical_shape=bcast_shape)
mapping = {'input': input_op_data, 'other': other_op_data, 'output': output_op_data}
return mapping
def get_strategy_generator(self) -> List[StrategyGenerator]:
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(BinaryElementwiseStrategyGenerator(op_data_mapping, self.device_mesh))
return generators
def post_process(self, strategy: ShardingStrategy) -> Union[ShardingStrategy, List[ShardingStrategy]]:
# convert bias from its logical sharding spec to its physical sharding spec
op_data_mapping = self.get_operation_data_mapping()
for op_name, op_data in op_data_mapping.items():
if not isinstance(op_data.data, torch.Tensor):
# remove the sharding spec if the op_data is not a tensor, e.g. torch.pow(tensor, 2)
strategy.sharding_specs.pop(op_data)
else:
# convert the logical sharding spec to physical sharding spec if broadcast
# e.g. torch.rand(4, 4) + torch.rand(4)
physical_shape = op_data.data.shape
logical_shape = op_data.logical_shape
sharding_spec = strategy.get_sharding_spec_by_name(op_data.name)
sharding_spec = recover_sharding_spec_for_broadcast_shape(sharding_spec, logical_shape, physical_shape)
strategy.sharding_specs[op_data] = sharding_spec
return strategy

View File

@ -8,7 +8,12 @@ class Registry:
def register(self, source):
def wrapper(func):
self.store[source] = func
if isinstance(source, (list, tuple)):
# support register a list of items for this func
for element in source:
self.store[element] = func
else:
self.store[source] = func
return func
return wrapper

View File

@ -1,9 +1,14 @@
from .batch_norm_generator import BatchNormStrategyGenerator
from .binary_elementwise_generator import BinaryElementwiseStrategyGenerator
from .conv_strategy_generator import ConvStrategyGenerator
from .getitem_generator import (GetItemStrategyGenerator, TensorStrategyGenerator, TensorTupleStrategyGenerator)
from .getitem_generator import GetItemStrategyGenerator, TensorStrategyGenerator, TensorTupleStrategyGenerator
from .layer_norm_generator import LayerNormGenerator
from .matmul_strategy_generator import (BatchedMatMulStrategyGenerator, DotProductStrategyGenerator,
LinearProjectionStrategyGenerator, MatVecStrategyGenerator)
from .matmul_strategy_generator import (
BatchedMatMulStrategyGenerator,
DotProductStrategyGenerator,
LinearProjectionStrategyGenerator,
MatVecStrategyGenerator,
)
from .normal_pooling_generator import NormalPoolStrategyGenerator
from .output_generator import OutputGenerator
from .placeholder_generator import PlaceholderGenerator
@ -17,5 +22,5 @@ __all__ = [
'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator', 'UnaryElementwiseGenerator',
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator',
'ReshapeGenerator', 'NormalPoolStrategyGenerator'
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator'
]

View File

@ -0,0 +1,111 @@
import operator
from functools import reduce
from typing import List
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, ShardingStrategy, TrainCycleItem
from colossalai.auto_parallel.tensor_shard.utils import (
enumerate_all_possible_1d_sharding,
enumerate_all_possible_2d_sharding,
ignore_sharding_exception,
)
from colossalai.tensor.sharding_spec import ShardingSpecException
from .strategy_generator import StrategyGenerator
__all__ = ['BinaryElementwiseStrategyGenerator']
class BinaryElementwiseStrategyGenerator(StrategyGenerator):
"""
An BinaryElementwiseStrategyGenerator is a node handler which deals with elementwise operations
which have two operands and broadcasting occurs such as torch.add.
The logical shape for this operation will be `input <op> other`.
"""
def validate(self) -> bool:
assert len(self.op_data) == 3, \
f'BinaryElementwiseStrategyGenerator only accepts three operation data (input, other and output), but got {len(self.op_data)}'
for name, op_data in self.op_data.items():
if not isinstance(op_data.data, (torch.Tensor, int, float)):
raise TypeError(f'The operation data {name} is not a torch.Tensor/int/float.')
def update_compute_cost(self, strategy: ShardingStrategy) -> ShardingStrategy:
shape = strategy.sharding_specs[self.op_data['input']].get_sharded_shape_per_device()
# since elementwise ops are not compute-intensive,
# we approximate the backward compute cost
# to be twice the fwd compute cost
fwd_compute_cost = reduce(operator.mul, shape)
bwd_compute_cost = fwd_compute_cost * 2
compute_cost = TrainCycleItem(fwd=fwd_compute_cost,
bwd=bwd_compute_cost,
total=fwd_compute_cost + bwd_compute_cost)
strategy.compute_cost = compute_cost
def update_memory_cost(self, strategy: ShardingStrategy) -> ShardingStrategy:
# all input, output and outputs have the same shape
shape = strategy.sharding_specs[self.op_data['input']].get_sharded_shape_per_device()
# compute fwd memory cost in bytes
# as the elementwise ops are not memory-intensive
# we approximate the fwd memroy cost to be the output
# and the backward memory cost to be grad of input and other
input_bytes = self._compute_size_in_bytes(strategy, 'input')
other_bytes = self._compute_size_in_bytes(strategy, 'other')
output_bytes = self._compute_size_in_bytes(strategy, 'output')
fwd_memory_cost = MemoryCost(activation=output_bytes)
bwd_memory_cost = MemoryCost(activation=input_bytes + other_bytes)
total_memory_cost = MemoryCost(activation=input_bytes + other_bytes + output_bytes)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_memory_cost)
strategy.memory_cost = memory_cost
@ignore_sharding_exception
def enumerate_all_possible_output(self, mesh_dim_0, mesh_dim_1):
# we check for the output logical shape to get the number of dimensions
dim_partition_list = []
dim_size = len(self.op_data['output'].logical_shape)
# enumerate all the 2D sharding cases
sharding_list_2d = enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, dim_size)
dim_partition_list.extend(sharding_list_2d)
# enumerate all the 1D sharding cases
sharding_list_1d_on_dim_0 = enumerate_all_possible_1d_sharding(mesh_dim_0, dim_size)
dim_partition_list.extend(sharding_list_1d_on_dim_0)
sharding_list_1d_on_dim_1 = enumerate_all_possible_1d_sharding(mesh_dim_1, dim_size)
dim_partition_list.extend(sharding_list_1d_on_dim_1)
# add empty dict for fully replicated case
dim_partition_list.append({})
# sharding strategy bookkeeping
strategy_list = []
# convert these dim partition dict to sharding strategy
for dim_partition_dict in dim_partition_list:
dim_partition_dict_mapping = dict(input=dim_partition_dict,
other=dim_partition_dict,
output=dim_partition_dict)
try:
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
communication_action_mapping = {}
# get name
sharding_seq = sharding_spec_mapping['input'].sharding_sequence
name = f'{sharding_seq} = {sharding_seq} <binary-elementwise-op> {sharding_seq}'
sharding_strategy = self.get_sharding_strategy(
name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
strategy_list.append(sharding_strategy)
except ShardingSpecException:
continue
return strategy_list
def collate_strategies(self) -> List[ShardingStrategy]:
strategy_list = self.enumerate_all_possible_output(0, 1)
return strategy_list

View File

@ -54,6 +54,11 @@ def recover_sharding_spec_for_broadcast_shape(logical_sharding_spec: ShardingSpe
logical_shape (torch.Size): logical shape is the broadcast shape of a tensor
physical_shape (torch.Size): the shape of the tensor before broadcasting
"""
# if the two shapes are the same, no broadcast occurs
# we directly return the current sharding spec
if list(logical_shape) == list(physical_shape):
return logical_sharding_spec
# get the number of dimensions
logical_num_dims = len(logical_shape)
physical_num_dims = len(physical_shape)

View File

@ -0,0 +1,173 @@
import torch
import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.node_handler import BinaryElementwiseHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.testing import parameterize
@parameterize('op', [torch.add])
@parameterize('other_dim', [1, 2])
def test_binary_elementwise_handler_with_tensor(op, other_dim):
class BinaryElementwiseOpModel(nn.Module):
def __init__(self, op):
super().__init__()
self.op = op
def forward(self, x1, x2):
out = self.op(x1, x2)
return out
model = BinaryElementwiseOpModel(op)
tracer = ColoTracer()
meta_args = {'x1': torch.rand(4, 4).to('meta'), 'x2': torch.rand([4] * other_dim).to('meta')}
graph = tracer.trace(model, meta_args=meta_args)
print(graph)
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
op_node = list(graph.nodes)[2]
strategies_vector = StrategiesVector(op_node)
# build handler
handler = BinaryElementwiseHandler(node=op_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# check operation data mapping
mapping = handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.logical_shape is not None
assert op_data.data is not None
assert mapping['input'].name == "x1"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([4, 4])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 4])
assert mapping['other'].name == "x2"
assert mapping['other'].data.is_meta
assert mapping['other'].data.shape == torch.Size([4] * other_dim)
assert mapping['other'].type == OperationDataType.ARG
assert mapping['other'].logical_shape == torch.Size([4, 4])
assert mapping['output'].name == str(op_node)
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([4, 4])
assert mapping['output'].type == OperationDataType.OUTPUT
assert mapping['output'].logical_shape == torch.Size([4, 4])
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
strategy_name_list = [val.name for val in strategies_vector]
# one strategy will be converted to different physical sharding spec
assert len(strategy_name_list) == 9
# check if the sharding strategy is correct
assert '[S0, S1] = [S0, S1] <binary-elementwise-op> [S0, S1]' in strategy_name_list
assert '[S1, S0] = [S1, S0] <binary-elementwise-op> [S1, S0]' in strategy_name_list
assert '[S01, R] = [S01, R] <binary-elementwise-op> [S01, R]' in strategy_name_list
assert '[R, S01] = [R, S01] <binary-elementwise-op> [R, S01]' in strategy_name_list
assert '[S0, R] = [S0, R] <binary-elementwise-op> [S0, R]' in strategy_name_list
assert '[R, S0] = [R, S0] <binary-elementwise-op> [R, S0]' in strategy_name_list
assert '[S1, R] = [S1, R] <binary-elementwise-op> [S1, R]' in strategy_name_list
assert '[R, S1] = [R, S1] <binary-elementwise-op> [R, S1]' in strategy_name_list
assert '[R, R] = [R, R] <binary-elementwise-op> [R, R]' in strategy_name_list
for strategy in strategies_vector:
input_sharding_spec = strategy.get_sharding_spec_by_name('x1')
other_sharding_spec = strategy.get_sharding_spec_by_name('x2')
output_sharding_spec = strategy.get_sharding_spec_by_name(str(op_node))
# make sure the sharding spec is the same for input and output
assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence
# since the dim of the other can change, we make sure at least its last dim sharding is the same
if len(other_sharding_spec.sharding_sequence) == 2:
assert input_sharding_spec.sharding_sequence == other_sharding_spec.sharding_sequence
elif len(other_sharding_spec.sharding_sequence) == 1:
assert input_sharding_spec.sharding_sequence[-1] == other_sharding_spec.sharding_sequence[-1]
@parameterize('op', [torch.add])
@parameterize('other', [1, 2])
def test_binary_elementwise_handler_with_int(op, other):
class BinaryElementwiseOpModel(nn.Module):
def __init__(self, op, const):
super().__init__()
self.op = op
self.const = const
def forward(self, x1):
out = self.op(x1, self.const)
return out
model = BinaryElementwiseOpModel(op, other)
tracer = ColoTracer()
meta_args = {'x1': torch.rand(4, 4).to('meta')}
graph = tracer.trace(model, meta_args=meta_args)
print(graph)
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
op_node = list(graph.nodes)[1]
strategies_vector = StrategiesVector(op_node)
# build handler
handler = BinaryElementwiseHandler(node=op_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# check operation data mapping
mapping = handler.get_operation_data_mapping()
assert mapping['input'].name == "x1"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([4, 4])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 4])
assert mapping['output'].name == str(op_node)
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([4, 4])
assert mapping['output'].type == OperationDataType.OUTPUT
assert mapping['output'].logical_shape == torch.Size([4, 4])
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
strategy_name_list = [val.name for val in strategies_vector]
# one strategy will be converted to different physical sharding spec
assert len(strategy_name_list) == 9
# check if the sharding strategy is correct
assert '[S0, S1] = [S0, S1] <binary-elementwise-op> [S0, S1]' in strategy_name_list
assert '[S1, S0] = [S1, S0] <binary-elementwise-op> [S1, S0]' in strategy_name_list
assert '[S01, R] = [S01, R] <binary-elementwise-op> [S01, R]' in strategy_name_list
assert '[R, S01] = [R, S01] <binary-elementwise-op> [R, S01]' in strategy_name_list
assert '[S0, R] = [S0, R] <binary-elementwise-op> [S0, R]' in strategy_name_list
assert '[R, S0] = [R, S0] <binary-elementwise-op> [R, S0]' in strategy_name_list
assert '[S1, R] = [S1, R] <binary-elementwise-op> [S1, R]' in strategy_name_list
assert '[R, S1] = [R, S1] <binary-elementwise-op> [R, S1]' in strategy_name_list
assert '[R, R] = [R, R] <binary-elementwise-op> [R, R]' in strategy_name_list
for strategy in strategies_vector:
input_sharding_spec = strategy.get_sharding_spec_by_name('x1')
output_sharding_spec = strategy.get_sharding_spec_by_name(str(op_node))
# make sure the sharding spec is the same for input and output
assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence
if __name__ == '__main__':
test_binary_elementwise_handler_with_tensor()
test_binary_elementwise_handler_with_int()