mirror of https://github.com/hpcaitech/ColossalAI
[chat] fix train_prompts.py gemini strategy bug (#3666)
* fix gemini strategy bug * add comment * add comment * better solutionpull/3699/head
parent
d556648885
commit
2da5d81dec
|
@ -36,45 +36,45 @@ def main(args):
|
|||
if args.rm_path is not None:
|
||||
state_dict = torch.load(args.rm_path, map_location='cpu')
|
||||
|
||||
# configure model
|
||||
if args.model == 'gpt2':
|
||||
initial_model = GPTActor(pretrained=args.pretrain)
|
||||
elif args.model == 'bloom':
|
||||
initial_model = BLOOMActor(pretrained=args.pretrain)
|
||||
elif args.model == 'opt':
|
||||
initial_model = OPTActor(pretrained=args.pretrain)
|
||||
elif args.model == 'llama':
|
||||
initial_model = LlamaActor(pretrained=args.pretrain)
|
||||
elif args.model == 'roberta':
|
||||
initial_model = RoBERTaActor(pretrained=args.pretrain)
|
||||
else:
|
||||
raise ValueError(f'Unsupported actor model "{args.model}"')
|
||||
|
||||
if args.rm_model == None:
|
||||
rm_model_name = args.model
|
||||
else:
|
||||
rm_model_name = args.rm_model
|
||||
|
||||
if rm_model_name == 'gpt2':
|
||||
reward_model = GPTRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'bloom':
|
||||
reward_model = BLOOMRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'opt':
|
||||
reward_model = OPTRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'llama':
|
||||
reward_model = LlamaRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'roberta':
|
||||
reward_model = RoBERTaRM(pretrained=args.rm_pretrain)
|
||||
else:
|
||||
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
|
||||
|
||||
if args.rm_path is not None:
|
||||
reward_model.load_state_dict(state_dict)
|
||||
|
||||
initial_model.to(torch.float16).to(torch.cuda.current_device())
|
||||
reward_model.to(torch.float16).to(torch.cuda.current_device())
|
||||
|
||||
with strategy.model_init_context():
|
||||
# configure model
|
||||
if args.model == 'gpt2':
|
||||
initial_model = GPTActor(pretrained=args.pretrain)
|
||||
elif args.model == 'bloom':
|
||||
initial_model = BLOOMActor(pretrained=args.pretrain)
|
||||
elif args.model == 'opt':
|
||||
initial_model = OPTActor(pretrained=args.pretrain)
|
||||
elif args.model == 'llama':
|
||||
initial_model = LlamaActor(pretrained=args.pretrain)
|
||||
elif args.model == 'roberta':
|
||||
initial_model = RoBERTaActor(pretrained=args.pretrain)
|
||||
else:
|
||||
raise ValueError(f'Unsupported actor model "{args.model}"')
|
||||
|
||||
if args.rm_model == None:
|
||||
rm_model_name = args.model
|
||||
else:
|
||||
rm_model_name = args.rm_model
|
||||
|
||||
if rm_model_name == 'gpt2':
|
||||
reward_model = GPTRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'bloom':
|
||||
reward_model = BLOOMRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'opt':
|
||||
reward_model = OPTRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'llama':
|
||||
reward_model = LlamaRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'roberta':
|
||||
reward_model = RoBERTaRM(pretrained=args.rm_pretrain)
|
||||
else:
|
||||
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
|
||||
|
||||
if args.rm_path is not None:
|
||||
reward_model.load_state_dict(state_dict)
|
||||
|
||||
initial_model.to(torch.float16).to(torch.cuda.current_device())
|
||||
reward_model.to(torch.float16).to(torch.cuda.current_device())
|
||||
|
||||
if args.model == 'gpt2':
|
||||
actor = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
|
||||
elif args.model == 'bloom':
|
||||
|
|
Loading…
Reference in New Issue