mirror of https://github.com/hpcaitech/ColossalAI
[fx] added testing for all gpt variants (#1210)
* [fx] added testing for all gpt variants * polish code * polish codepull/1211/head
parent
189946c5c4
commit
2d13a45a3b
|
@ -1,8 +1,7 @@
|
||||||
import operator
|
import operator
|
||||||
import torch
|
import torch
|
||||||
from torch.fx.proxy import Proxy, Attribute
|
from torch.fx.proxy import Proxy, Attribute
|
||||||
from typing import List, Union
|
from typing import List, Union, Any
|
||||||
from torch.utils._pytree import PyTree
|
|
||||||
|
|
||||||
__all__ = ['ColoProxy']
|
__all__ = ['ColoProxy']
|
||||||
|
|
||||||
|
@ -14,34 +13,33 @@ class ColoProxy(Proxy):
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
proxy = tracer.create_proxy(...)
|
proxy = tracer.create_proxy(...)
|
||||||
proxy.meta_tensor = torch.empty(4, 2, device='meta')
|
proxy.meta_data = torch.empty(4, 2, device='meta')
|
||||||
print(len(proxy)) # expect output 4
|
print(len(proxy)) # expect output 4
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
self._meta_tensor = None
|
self._meta_data = None
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def meta_tensor(self):
|
def meta_data(self):
|
||||||
return self._meta_tensor
|
return self._meta_data
|
||||||
|
|
||||||
@meta_tensor.setter
|
@meta_data.setter
|
||||||
def meta_tensor(self, tensor: Union[List[torch.Tensor], torch.Tensor]):
|
def meta_data(self, data: Any):
|
||||||
|
self._meta_data = data
|
||||||
def _is_meta(item):
|
|
||||||
assert torch.is_tensor(item) and item.is_meta
|
|
||||||
|
|
||||||
torch.fx.node.map_aggregate(tensor, _is_meta)
|
|
||||||
self._meta_tensor = tensor
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def has_meta_tensor(self):
|
def has_meta_data(self):
|
||||||
return self.meta_tensor is not None
|
return self._meta_data is not None
|
||||||
|
|
||||||
def _assert_has_meta(self):
|
def _assert_meta_data_is_tensor(self):
|
||||||
assert self.has_meta_tensor, f'Meta tensor is not set for {self.node.name}'
|
assert torch.is_tensor(
|
||||||
|
self._meta_data) and self._meta_data.is_meta, f'Meta data is not a meta tensor for {self.node.name}'
|
||||||
|
|
||||||
|
def _assert_has_meta_data(self):
|
||||||
|
assert self._meta_data, f'Meta data is not set for {self.node.name}'
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def device(self):
|
def device(self):
|
||||||
|
@ -51,37 +49,37 @@ class ColoProxy(Proxy):
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def dtype(self):
|
def dtype(self):
|
||||||
self._assert_has_meta()
|
self._assert_meta_data_is_tensor()
|
||||||
return self.meta_tensor.dtype
|
return self.meta_data.dtype
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def shape(self):
|
def shape(self):
|
||||||
self._assert_has_meta()
|
self._assert_meta_data_is_tensor()
|
||||||
return self.meta_tensor.shape
|
return self.meta_data.shape
|
||||||
|
|
||||||
def dim(self):
|
def dim(self):
|
||||||
self._assert_has_meta()
|
self._assert_meta_data_is_tensor()
|
||||||
return self.meta_tensor.dim()
|
return self.meta_data.dim()
|
||||||
|
|
||||||
def size(self, dim: int = None):
|
def size(self, dim: int = None):
|
||||||
self._assert_has_meta()
|
self._assert_meta_data_is_tensor()
|
||||||
if dim:
|
if dim:
|
||||||
return self.meta_tensor.size(dim=dim)
|
return self.meta_data.size(dim=dim)
|
||||||
else:
|
else:
|
||||||
# size(dim=None) will trigger runtime error for meta tensor
|
# size(dim=None) will trigger runtime error for meta tensor
|
||||||
return self.meta_tensor.size()
|
return self.meta_data.size()
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
self._assert_has_meta()
|
self._assert_has_meta_data()
|
||||||
return len(self.meta_tensor)
|
return len(self.meta_data)
|
||||||
|
|
||||||
def __bool__(self):
|
def __bool__(self):
|
||||||
self._assert_has_meta()
|
self._assert_has_meta_data()
|
||||||
return self.meta_tensor
|
return self.meta_data
|
||||||
|
|
||||||
def __getattr__(self, k):
|
def __getattr__(self, k):
|
||||||
if k == "metadata":
|
if k == "meta_data":
|
||||||
return self.meta_tensor
|
return self.__getattribute__(k)
|
||||||
# note: not added to the graph yet, if this is a method call
|
# note: not added to the graph yet, if this is a method call
|
||||||
# we peephole optimize to the method invocation
|
# we peephole optimize to the method invocation
|
||||||
return Attribute(self, k)
|
return Attribute(self, k)
|
||||||
|
|
|
@ -22,8 +22,8 @@ def extract_meta(*args, **kwargs):
|
||||||
if isinstance(val, MetaDeviceAttribute):
|
if isinstance(val, MetaDeviceAttribute):
|
||||||
return 'meta'
|
return 'meta'
|
||||||
elif isinstance(val, ColoProxy):
|
elif isinstance(val, ColoProxy):
|
||||||
assert val.meta_tensor is not None
|
assert val.meta_data is not None
|
||||||
return val.meta_tensor
|
return val.meta_data
|
||||||
return val
|
return val
|
||||||
|
|
||||||
new_args = [_convert(val) for val in args]
|
new_args = [_convert(val) for val in args]
|
||||||
|
|
|
@ -60,3 +60,32 @@ def torch_matmul(input, other, *, out=None):
|
||||||
if shape is None:
|
if shape is None:
|
||||||
return torch.tensor(0.0, device="meta")
|
return torch.tensor(0.0, device="meta")
|
||||||
return torch.empty(*shape, device="meta")
|
return torch.empty(*shape, device="meta")
|
||||||
|
|
||||||
|
|
||||||
|
@meta_patched_function.register(torch.arange)
|
||||||
|
def torch_arange(*args, **kwargs):
|
||||||
|
n = len(args)
|
||||||
|
step = 1
|
||||||
|
if n == 1:
|
||||||
|
start = 0
|
||||||
|
end = args[0]
|
||||||
|
elif n == 2:
|
||||||
|
start, end = args
|
||||||
|
else:
|
||||||
|
start, end, step = args
|
||||||
|
if isinstance(start, float):
|
||||||
|
start = int(start)
|
||||||
|
if isinstance(end, float):
|
||||||
|
start = int(end)
|
||||||
|
if isinstance(step, float):
|
||||||
|
step = int(step)
|
||||||
|
step = kwargs.get("step", step)
|
||||||
|
dtype = kwargs.get("dtype")
|
||||||
|
return torch.empty((end - start) // step, dtype=dtype, device="meta")
|
||||||
|
|
||||||
|
|
||||||
|
@meta_patched_function.register(torch.where)
|
||||||
|
def torch_where(condition, x, y):
|
||||||
|
# torch.where returns the broadcasted tensor of condition, x, and y,
|
||||||
|
# so hack it by using addition
|
||||||
|
return condition.to(device="meta") + x.to(device="meta") + y.to(device="meta")
|
|
@ -14,7 +14,6 @@ from torch import Tensor
|
||||||
from torch.fx import Tracer
|
from torch.fx import Tracer
|
||||||
from torch.fx.graph import Graph
|
from torch.fx.graph import Graph
|
||||||
from torch.fx.proxy import Proxy, ParameterProxy
|
from torch.fx.proxy import Proxy, ParameterProxy
|
||||||
from torch.utils import _pytree
|
|
||||||
from ..proxy import ColoProxy
|
from ..proxy import ColoProxy
|
||||||
from typing import Optional, Dict, Any
|
from typing import Optional, Dict, Any
|
||||||
from ._tracer_utils import is_element_in_list, extract_meta
|
from ._tracer_utils import is_element_in_list, extract_meta
|
||||||
|
@ -62,7 +61,7 @@ class ColoTracer(Tracer):
|
||||||
proxy: ColoProxy
|
proxy: ColoProxy
|
||||||
|
|
||||||
if kind == "placeholder" and target in self.meta_args and self.meta_args[target].is_meta:
|
if kind == "placeholder" and target in self.meta_args and self.meta_args[target].is_meta:
|
||||||
proxy.meta_tensor = self.meta_args[target]
|
proxy.meta_data = self.meta_args[target]
|
||||||
return proxy
|
return proxy
|
||||||
|
|
||||||
if target in self.orig_torch_tensor_methods:
|
if target in self.orig_torch_tensor_methods:
|
||||||
|
@ -128,7 +127,7 @@ class ColoTracer(Tracer):
|
||||||
|
|
||||||
if not isinstance(proxy, Proxy):
|
if not isinstance(proxy, Proxy):
|
||||||
raise ValueError("Don't support composite output yet")
|
raise ValueError("Don't support composite output yet")
|
||||||
proxy.meta_tensor = meta_out
|
proxy.meta_data = meta_out
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise RuntimeError(f"Could not compute metadata for {kind} target {target}: {e}")
|
raise RuntimeError(f"Could not compute metadata for {kind} target {target}: {e}")
|
||||||
return proxy
|
return proxy
|
||||||
|
|
|
@ -10,7 +10,7 @@ def test_coloproxy():
|
||||||
|
|
||||||
# create proxy
|
# create proxy
|
||||||
proxy = ColoProxy(node=node)
|
proxy = ColoProxy(node=node)
|
||||||
proxy.meta_tensor = torch.empty(4, 2, device='meta')
|
proxy.meta_data = torch.empty(4, 2, device='meta')
|
||||||
|
|
||||||
assert len(proxy) == 4
|
assert len(proxy) == 4
|
||||||
assert proxy.shape[0] == 4 and proxy.shape[1] == 2
|
assert proxy.shape[0] == 4 and proxy.shape[1] == 2
|
||||||
|
|
|
@ -1,39 +1,11 @@
|
||||||
import transformers
|
import transformers
|
||||||
import torch
|
import torch
|
||||||
from colossalai.fx import ColoTracer
|
from utils import trace_model_and_compare_output
|
||||||
from torch.fx import GraphModule
|
|
||||||
|
|
||||||
BATCH_SIZE = 2
|
BATCH_SIZE = 2
|
||||||
SEQ_LENGHT = 16
|
SEQ_LENGHT = 16
|
||||||
|
|
||||||
|
|
||||||
def trace_bert_and_compare_output(model, data_gen):
|
|
||||||
tracer = ColoTracer()
|
|
||||||
# make sure that the model is traceable
|
|
||||||
try:
|
|
||||||
kwargs = data_gen()
|
|
||||||
meta_args = {k: v.to('meta') for k, v in kwargs.items()}
|
|
||||||
graph = tracer.trace(root=model, meta_args=meta_args)
|
|
||||||
except Exception as e:
|
|
||||||
raise RuntimeError(f"Failed to trace {model.__class__.__name__}, error: {e}")
|
|
||||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
|
||||||
gm.recompile()
|
|
||||||
|
|
||||||
# check output
|
|
||||||
inputs = data_gen()
|
|
||||||
|
|
||||||
# must turn on eval mode to ensure the output is consistent
|
|
||||||
gm.eval()
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
# run forward
|
|
||||||
non_fx_out = model(**inputs)
|
|
||||||
fx_out = gm(**inputs)
|
|
||||||
|
|
||||||
for k in non_fx_out.keys():
|
|
||||||
assert torch.equal(fx_out[k], non_fx_out[k]), f'{model.__class__.__name__} has incorrect output {k}'
|
|
||||||
|
|
||||||
|
|
||||||
def test_single_sentence_bert():
|
def test_single_sentence_bert():
|
||||||
MODEL_LIST = [
|
MODEL_LIST = [
|
||||||
transformers.BertModel,
|
transformers.BertModel,
|
||||||
|
@ -55,7 +27,7 @@ def test_single_sentence_bert():
|
||||||
|
|
||||||
for model_cls in MODEL_LIST:
|
for model_cls in MODEL_LIST:
|
||||||
model = model_cls(config=config)
|
model = model_cls(config=config)
|
||||||
trace_bert_and_compare_output(model, data_gen)
|
trace_model_and_compare_output(model, data_gen)
|
||||||
|
|
||||||
|
|
||||||
def test_multi_sentence_bert():
|
def test_multi_sentence_bert():
|
||||||
|
@ -69,7 +41,7 @@ def test_multi_sentence_bert():
|
||||||
return encoding
|
return encoding
|
||||||
|
|
||||||
model = transformers.BertForNextSentencePrediction(config)
|
model = transformers.BertForNextSentencePrediction(config)
|
||||||
trace_bert_and_compare_output(model, data_gen_for_next_sentence)
|
trace_model_and_compare_output(model, data_gen_for_next_sentence)
|
||||||
|
|
||||||
def data_gen_for_qa():
|
def data_gen_for_qa():
|
||||||
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
||||||
|
@ -77,7 +49,7 @@ def test_multi_sentence_bert():
|
||||||
return inputs
|
return inputs
|
||||||
|
|
||||||
model = transformers.BertForQuestionAnswering(config)
|
model = transformers.BertForQuestionAnswering(config)
|
||||||
trace_bert_and_compare_output(model, data_gen_for_qa)
|
trace_model_and_compare_output(model, data_gen_for_qa)
|
||||||
|
|
||||||
def data_gen_for_mcq():
|
def data_gen_for_mcq():
|
||||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||||
|
@ -88,7 +60,7 @@ def test_multi_sentence_bert():
|
||||||
return encoding
|
return encoding
|
||||||
|
|
||||||
model = transformers.BertForMultipleChoice(config)
|
model = transformers.BertForMultipleChoice(config)
|
||||||
trace_bert_and_compare_output(model, data_gen_for_mcq)
|
trace_model_and_compare_output(model, data_gen_for_mcq)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -0,0 +1,33 @@
|
||||||
|
import transformers
|
||||||
|
import torch
|
||||||
|
from utils import trace_model_and_compare_output
|
||||||
|
|
||||||
|
BATCH_SIZE = 1
|
||||||
|
SEQ_LENGHT = 16
|
||||||
|
|
||||||
|
|
||||||
|
def test_gpt():
|
||||||
|
MODEL_LIST = [
|
||||||
|
transformers.GPT2Model,
|
||||||
|
transformers.GPT2LMHeadModel,
|
||||||
|
transformers.GPT2DoubleHeadsModel,
|
||||||
|
transformers.GPT2ForTokenClassification,
|
||||||
|
# transformers.GPT2ForSequenceClassification, # not supported yet
|
||||||
|
]
|
||||||
|
|
||||||
|
config = transformers.GPT2Config(n_position=64, n_layer=2, n_head=4)
|
||||||
|
|
||||||
|
def data_gen():
|
||||||
|
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
|
||||||
|
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
|
||||||
|
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
|
||||||
|
kwargs = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||||
|
return kwargs
|
||||||
|
|
||||||
|
for model_cls in MODEL_LIST:
|
||||||
|
model = model_cls(config=config)
|
||||||
|
trace_model_and_compare_output(model, data_gen)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_gpt()
|
|
@ -0,0 +1,33 @@
|
||||||
|
from numpy import isin
|
||||||
|
import torch
|
||||||
|
from colossalai.fx import ColoTracer
|
||||||
|
from torch.fx import GraphModule
|
||||||
|
from torch.utils._pytree import tree_flatten
|
||||||
|
|
||||||
|
|
||||||
|
def trace_model_and_compare_output(model, data_gen):
|
||||||
|
tracer = ColoTracer()
|
||||||
|
# make sure that the model is traceable
|
||||||
|
try:
|
||||||
|
kwargs = data_gen()
|
||||||
|
meta_args = {k: v.to('meta') for k, v in kwargs.items()}
|
||||||
|
graph = tracer.trace(root=model, meta_args=meta_args)
|
||||||
|
except Exception as e:
|
||||||
|
raise RuntimeError(f"Failed to trace {model.__class__.__name__}, error: {e}")
|
||||||
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||||
|
gm.recompile()
|
||||||
|
|
||||||
|
# check output
|
||||||
|
inputs = data_gen()
|
||||||
|
|
||||||
|
# must turn on eval mode to ensure the output is consistent
|
||||||
|
gm.eval()
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
# run forward
|
||||||
|
non_fx_out = model(**inputs)
|
||||||
|
fx_out = gm(**inputs)
|
||||||
|
|
||||||
|
for k in non_fx_out.keys():
|
||||||
|
if torch.is_tensor(fx_out[k]):
|
||||||
|
assert torch.equal(fx_out[k], non_fx_out[k]), f'{model.__class__.__name__} has incorrect output {k}'
|
Loading…
Reference in New Issue