mirror of https://github.com/hpcaitech/ColossalAI
[fx]add uniform policy (#1208)
* [CLI] add CLI launcher
* Revert "[CLI] add CLI launcher"
This reverts commit df7e6506d4
.
* [fx]add uniform policy
pull/1211/head
parent
426a279ce7
commit
189946c5c4
|
@ -32,6 +32,35 @@ def balanced_split_pass(gm: torch.fx.GraphModule, pp_size: int):
|
|||
return gm
|
||||
|
||||
|
||||
def uniform_split_pass(gm: torch.fx.GraphModule, pp_size: int):
|
||||
mod_graph = gm.graph
|
||||
valid_children_size = 0
|
||||
valid_children = []
|
||||
for module in mod_graph.owning_module.children():
|
||||
valid_children_size += 1
|
||||
valid_children.append(module)
|
||||
|
||||
if valid_children_size < pp_size:
|
||||
# If valid children is not enough to shard, we will use balanced policy instead of uniform policy.
|
||||
return balanced_split_pass(gm, pp_size)
|
||||
layers_per_partition = valid_children_size // pp_size
|
||||
accumulate_layer_amount = 0
|
||||
for node in mod_graph.nodes:
|
||||
if pp_size <= 1:
|
||||
break
|
||||
if node.op == "call_module":
|
||||
target_module = node.graph.owning_module.get_submodule(node.target)
|
||||
if target_module in valid_children:
|
||||
accumulate_layer_amount += 1
|
||||
if accumulate_layer_amount == layers_per_partition:
|
||||
accumulate_layer_amount = 0
|
||||
pp_size -= 1
|
||||
with mod_graph.inserting_after(node):
|
||||
split_node = mod_graph.create_node('call_function', pipe_split)
|
||||
gm.recompile()
|
||||
return gm
|
||||
|
||||
|
||||
def split_with_split_nodes_pass(annotated_gm: torch.fx.GraphModule):
|
||||
part_idx = 0
|
||||
|
||||
|
|
|
@ -0,0 +1,48 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import colossalai
|
||||
import colossalai.nn as col_nn
|
||||
from torch.fx import symbolic_trace
|
||||
from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass, \
|
||||
uniform_split_pass
|
||||
|
||||
MODEL_DIM = 16
|
||||
BATCH_SIZE = 8
|
||||
PIPELINE_SIZE = 2
|
||||
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
|
||||
def __init__(self, dim: int):
|
||||
super().__init__()
|
||||
self.linear1 = torch.nn.Linear(dim, dim)
|
||||
self.linear2 = torch.nn.Linear(dim, dim)
|
||||
self.linear3 = torch.nn.Linear(dim, dim)
|
||||
self.linear4 = torch.nn.Linear(dim, dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
x = self.linear2(x)
|
||||
x = self.linear3(x)
|
||||
x = self.linear4(x)
|
||||
return x
|
||||
|
||||
|
||||
def pipeline_pass_test_helper(model, data, pass_func):
|
||||
origin_output = model(data)
|
||||
symbolic_traced = symbolic_trace(model)
|
||||
annotated_model = pass_func(symbolic_traced, PIPELINE_SIZE)
|
||||
split_model, split_submodules = split_with_split_nodes_pass(annotated_model)
|
||||
output = split_model(data)
|
||||
assert output.equal(origin_output)
|
||||
|
||||
|
||||
def test_pipeline_passes():
|
||||
model = MLP(MODEL_DIM)
|
||||
data = torch.rand(BATCH_SIZE, MODEL_DIM)
|
||||
pipeline_pass_test_helper(model, data, balanced_split_pass)
|
||||
pipeline_pass_test_helper(model, data, uniform_split_pass)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_pipeline_passes()
|
Loading…
Reference in New Issue