mirror of https://github.com/hpcaitech/ColossalAI
[example] make palm + GeminiDPP work (#2227)
parent
63cc77173b
commit
2cdecc9f38
|
@ -1,7 +1,7 @@
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
from torch import einsum, nn, matmul
|
from torch import einsum, matmul, nn
|
||||||
|
|
||||||
# normalization
|
# normalization
|
||||||
# they use layernorm without bias, something that pytorch does not offer
|
# they use layernorm without bias, something that pytorch does not offer
|
||||||
|
@ -86,8 +86,6 @@ def FeedForward(dim, mult=4):
|
||||||
|
|
||||||
|
|
||||||
# attention
|
# attention
|
||||||
|
|
||||||
|
|
||||||
class Attention(nn.Module):
|
class Attention(nn.Module):
|
||||||
|
|
||||||
def __init__(self, dim, dim_head=64, heads=8):
|
def __init__(self, dim, dim_head=64, heads=8):
|
||||||
|
@ -142,8 +140,6 @@ class Attention(nn.Module):
|
||||||
|
|
||||||
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1))
|
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# split heads
|
# split heads
|
||||||
# they use multi-query single-key-value attention, yet another Noam Shazeer paper
|
# they use multi-query single-key-value attention, yet another Noam Shazeer paper
|
||||||
# they found no performance loss past a certain scale, and more efficient decoding obviously
|
# they found no performance loss past a certain scale, and more efficient decoding obviously
|
||||||
|
@ -165,7 +161,7 @@ class Attention(nn.Module):
|
||||||
# similarity
|
# similarity
|
||||||
|
|
||||||
#sim = einsum("b h i d, b j d -> b h i j", q, k)
|
#sim = einsum("b h i d, b j d -> b h i j", q, k)
|
||||||
sim = matmul(q.reshape(b, h*i, d), k.transpose(1,2))
|
sim = matmul(q.reshape(b, h * i, d), k.transpose(1, 2))
|
||||||
sim = sim.reshape(b, h, i, j)
|
sim = sim.reshape(b, h, i, j)
|
||||||
|
|
||||||
# causal mask
|
# causal mask
|
||||||
|
@ -183,7 +179,7 @@ class Attention(nn.Module):
|
||||||
# aggregate values
|
# aggregate values
|
||||||
|
|
||||||
#out = einsum("b h i j, b j d -> b h i d", attn, v)
|
#out = einsum("b h i j, b j d -> b h i d", attn, v)
|
||||||
out = matmul(attn.reshape(b_, h_*i_, j_), v)
|
out = matmul(attn.reshape(b_, h_ * i_, j_), v)
|
||||||
out = out.reshape(b_, h_, i_, d_)
|
out = out.reshape(b_, h_, i_, d_)
|
||||||
|
|
||||||
# merge heads
|
# merge heads
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
env OMP_NUM_THREADS=12 torchrun --nproc_per_node 8 --master_port 29501 train.py --config palm_config.py
|
env OMP_NUM_THREADS=12 torchrun --nproc_per_node 4 --master_port 29501 train.py --config palm_config.py
|
||||||
|
|
|
@ -5,38 +5,36 @@ import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
import tqdm
|
import tqdm
|
||||||
|
from packaging import version
|
||||||
from palm_pytorch import PaLM
|
from palm_pytorch import PaLM
|
||||||
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
|
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
from torch.utils.data import DataLoader, Dataset
|
from torch.utils.data import DataLoader, Dataset
|
||||||
from packaging import version
|
|
||||||
|
|
||||||
import colossalai
|
import colossalai
|
||||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||||
|
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
|
||||||
|
from colossalai.nn.parallel import GeminiDDP, ZeroDDP
|
||||||
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
|
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
|
||||||
from colossalai.utils import MultiTimer, get_current_device
|
from colossalai.utils import MultiTimer, get_current_device
|
||||||
from colossalai.nn.parallel import ZeroDDP
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||||
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
|
|
||||||
from colossalai.nn.parallel import GeminiDDP
|
|
||||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
|
||||||
|
|
||||||
# constants
|
# constants
|
||||||
|
|
||||||
NUM_BATCHES = int(1e5)
|
NUM_BATCHES = int(20)
|
||||||
BATCH_SIZE = 4
|
BATCH_SIZE = 4
|
||||||
GRADIENT_ACCUMULATE_EVERY = 4
|
GRADIENT_ACCUMULATE_EVERY = 1
|
||||||
LEARNING_RATE = 2e-4
|
LEARNING_RATE = 2e-4
|
||||||
VALIDATE_EVERY = 100
|
VALIDATE_EVERY = 100
|
||||||
GENERATE_EVERY = 500
|
GENERATE_EVERY = 500
|
||||||
GENERATE_LENGTH = 512
|
GENERATE_LENGTH = 512
|
||||||
SEQ_LEN = 1024
|
SEQ_LEN = 1024
|
||||||
TPDEGREE = 2
|
TPDEGREE = 1
|
||||||
USE_SHARD_INIT = False
|
USE_SHARD_INIT = False
|
||||||
placement = 'cpu'
|
placement = 'cpu'
|
||||||
|
|
||||||
|
|
||||||
# helpers
|
# helpers
|
||||||
|
|
||||||
|
|
||||||
def cycle(loader):
|
def cycle(loader):
|
||||||
while True:
|
while True:
|
||||||
for data in loader:
|
for data in loader:
|
||||||
|
@ -50,6 +48,7 @@ def decode_token(token):
|
||||||
def decode_tokens(tokens):
|
def decode_tokens(tokens):
|
||||||
return "".join(list(map(decode_token, tokens)))
|
return "".join(list(map(decode_token, tokens)))
|
||||||
|
|
||||||
|
|
||||||
# Gemini + ZeRO DDP
|
# Gemini + ZeRO DDP
|
||||||
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
|
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
|
||||||
cai_version = colossalai.__version__
|
cai_version = colossalai.__version__
|
||||||
|
@ -73,6 +72,7 @@ def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy:
|
||||||
raise NotImplemented(f"CAI version {cai_version} is not supported")
|
raise NotImplemented(f"CAI version {cai_version} is not supported")
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
# instantiate GPT-like decoder model
|
# instantiate GPT-like decoder model
|
||||||
|
|
||||||
parser = colossalai.get_default_parser()
|
parser = colossalai.get_default_parser()
|
||||||
|
@ -80,24 +80,15 @@ args = parser.parse_args()
|
||||||
disable_existing_loggers()
|
disable_existing_loggers()
|
||||||
colossalai.launch_from_torch(config=args.config, seed=42)
|
colossalai.launch_from_torch(config=args.config, seed=42)
|
||||||
|
|
||||||
|
|
||||||
# instantiate GPT-like decoder model
|
# instantiate GPT-like decoder model
|
||||||
|
|
||||||
default_pg = ProcessGroup(tp_degree=TPDEGREE)
|
default_pg = ProcessGroup(tp_degree=TPDEGREE)
|
||||||
default_dist_spec = ShardSpec([-1], [TPDEGREE]) if USE_SHARD_INIT else None
|
default_dist_spec = ShardSpec([-1], [TPDEGREE]) if USE_SHARD_INIT else None
|
||||||
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
|
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
|
||||||
|
|
||||||
with ctx:
|
with ctx:
|
||||||
model = PaLM(num_tokens=256,dim=512,depth=8)
|
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||||
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
||||||
model.cuda()
|
|
||||||
|
|
||||||
|
|
||||||
# prepare enwik8 data
|
|
||||||
|
|
||||||
# model = PaLM(num_tokens=256, dim=512, depth=8)
|
|
||||||
|
|
||||||
# model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
|
||||||
# model.cuda()
|
|
||||||
|
|
||||||
with gzip.open("./data/enwik8.gz") as file:
|
with gzip.open("./data/enwik8.gz") as file:
|
||||||
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
||||||
|
@ -129,46 +120,42 @@ val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
|
||||||
#tensor_parallelize(model, pg)
|
#tensor_parallelize(model, pg)
|
||||||
|
|
||||||
pg = default_pg
|
pg = default_pg
|
||||||
# model = GeminiDDP(model,
|
|
||||||
# device=get_current_device(),
|
|
||||||
# placement_policy="auto",
|
|
||||||
# pin_memory=True,
|
|
||||||
# search_range_mb=32)
|
|
||||||
model = gemini_zero_dpp(model, pg, placement)
|
model = gemini_zero_dpp(model, pg, placement)
|
||||||
|
|
||||||
#optimizer
|
#optimizer
|
||||||
|
|
||||||
optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
|
optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
|
||||||
#optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
|
||||||
|
|
||||||
# training
|
# training
|
||||||
|
model.train()
|
||||||
|
|
||||||
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
||||||
model.train()
|
|
||||||
|
|
||||||
for __ in range(GRADIENT_ACCUMULATE_EVERY):
|
optimizer.zero_grad()
|
||||||
loss = model(next(train_loader))
|
|
||||||
loss.backward()
|
loss = model(next(train_loader))
|
||||||
|
# loss.backward()
|
||||||
|
optimizer.backward(loss)
|
||||||
|
|
||||||
print(f"training loss: {loss.item()}")
|
print(f"training loss: {loss.item()}")
|
||||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||||
# optim.step()
|
# optim.step()
|
||||||
# optim.zero_grad()
|
# optim.zero_grad()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
optimizer.zero_grad()
|
|
||||||
|
|
||||||
if i % VALIDATE_EVERY == 0:
|
# TODO
|
||||||
model.eval()
|
# if i % VALIDATE_EVERY == 0:
|
||||||
with torch.no_grad():
|
# model.eval()
|
||||||
loss = model(next(val_loader))
|
# with torch.no_grad():
|
||||||
print(f"validation loss: {loss.item()}")
|
# loss = model(next(val_loader))
|
||||||
|
# print(f"validation loss: {loss.item()}")
|
||||||
|
|
||||||
if i % GENERATE_EVERY == 0:
|
# if i % GENERATE_EVERY == 0:
|
||||||
model.eval()
|
# model.eval()
|
||||||
inp = random.choice(val_dataset)[:-1]
|
# inp = random.choice(val_dataset)[:-1]
|
||||||
prime = decode_tokens(inp)
|
# prime = decode_tokens(inp)
|
||||||
print(f"%s \n\n %s", (prime, "*" * 100))
|
# print(f"%s \n\n %s", (prime, "*" * 100))
|
||||||
|
|
||||||
sample = model.generate(inp[None, ...], GENERATE_LENGTH)
|
# sample = model.generate(inp[None, ...], GENERATE_LENGTH)
|
||||||
output_str = decode_tokens(sample[0])
|
# output_str = decode_tokens(sample[0])
|
||||||
print(output_str)
|
# print(output_str)
|
||||||
|
|
Loading…
Reference in New Issue