[example] Palm adding gemini, still has bugs (#2221)

pull/2227/head
ZijianYY 2022-12-29 14:01:09 +08:00 committed by GitHub
parent 7010e18134
commit 63cc77173b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 82 additions and 8 deletions

View File

@ -0,0 +1,6 @@
SEQ_LENGTH = 1024
BATCH_SIZE = 4
NUM_EPOCHS = 4
TPDEGREE = 2
USE_SHARD_INIT = False
placement = 'cpu'

View File

@ -47,7 +47,9 @@ class RotaryEmbedding(nn.Module):
def forward(self, max_seq_len, *, device):
seq = torch.arange(max_seq_len, device=device)
#freqs = einsum("i , j -> i j", seq.type_as(self.inv_freq), self.inv_freq)
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
#freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
i, j = len(seq.type_as(self.inv_freq)), len(self.inv_freq)
freqs = matmul(seq.type_as(self.inv_freq).reshape(i, 1), self.inv_freq.reshape(1, j))
return torch.cat((freqs, freqs), dim=-1)

View File

@ -0,0 +1 @@
env OMP_NUM_THREADS=12 torchrun --nproc_per_node 8 --master_port 29501 train.py --config palm_config.py

View File

@ -9,6 +9,16 @@ from palm_pytorch import PaLM
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
from packaging import version
import colossalai
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
from colossalai.utils import MultiTimer, get_current_device
from colossalai.nn.parallel import ZeroDDP
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
from colossalai.nn.parallel import GeminiDDP
from colossalai.logging import disable_existing_loggers, get_dist_logger
# constants
@ -20,6 +30,9 @@ VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 1024
TPDEGREE = 2
USE_SHARD_INIT = False
placement = 'cpu'
# helpers
@ -37,16 +50,55 @@ def decode_token(token):
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
# Gemini + ZeRO DDP
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
cai_version = colossalai.__version__
if version.parse(cai_version) > version.parse("0.1.10"):
from colossalai.nn.parallel import GeminiDDP
model = GeminiDDP(model,
device=get_current_device(),
placement_policy=placememt_policy,
pin_memory=True,
search_range_mb=32)
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
from colossalai.gemini import ChunkManager, GeminiManager
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
gemini_manager = GeminiManager(placememt_policy, chunk_manager)
chunk_manager = ChunkManager(chunk_size,
pg,
enable_distributed_storage=True,
init_device=GeminiManager.get_default_device(placememt_policy))
model = ZeroDDP(model, gemini_manager)
else:
raise NotImplemented(f"CAI version {cai_version} is not supported")
return model
# instantiate GPT-like decoder model
parser = colossalai.get_default_parser()
args = parser.parse_args()
disable_existing_loggers()
colossalai.launch_from_torch(config=args.config, seed=42)
# instantiate GPT-like decoder model
model = PaLM(num_tokens=256, dim=512, depth=8)
default_pg = ProcessGroup(tp_degree=TPDEGREE)
default_dist_spec = ShardSpec([-1], [TPDEGREE]) if USE_SHARD_INIT else None
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
with ctx:
model = PaLM(num_tokens=256,dim=512,depth=8)
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
model.cuda()
model = AutoregressiveWrapper(model, max_seq_len=2048)
model.cuda()
# prepare enwik8 data
# model = PaLM(num_tokens=256, dim=512, depth=8)
# model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
# model.cuda()
with gzip.open("./data/enwik8.gz") as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
@ -74,9 +126,20 @@ val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
# optimizer
#tensor_parallelize(model, pg)
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
pg = default_pg
# model = GeminiDDP(model,
# device=get_current_device(),
# placement_policy="auto",
# pin_memory=True,
# search_range_mb=32)
model = gemini_zero_dpp(model, pg, placement)
#optimizer
optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
#optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# training
@ -89,8 +152,10 @@ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
print(f"training loss: {loss.item()}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
# optim.step()
# optim.zero_grad()
optimizer.step()
optimizer.zero_grad()
if i % VALIDATE_EVERY == 0:
model.eval()