mirror of https://github.com/hpcaitech/ColossalAI
[example] Palm adding gemini, still has bugs (#2221)
parent
7010e18134
commit
63cc77173b
|
@ -0,0 +1,6 @@
|
|||
SEQ_LENGTH = 1024
|
||||
BATCH_SIZE = 4
|
||||
NUM_EPOCHS = 4
|
||||
TPDEGREE = 2
|
||||
USE_SHARD_INIT = False
|
||||
placement = 'cpu'
|
|
@ -47,7 +47,9 @@ class RotaryEmbedding(nn.Module):
|
|||
def forward(self, max_seq_len, *, device):
|
||||
seq = torch.arange(max_seq_len, device=device)
|
||||
#freqs = einsum("i , j -> i j", seq.type_as(self.inv_freq), self.inv_freq)
|
||||
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
||||
#freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
||||
i, j = len(seq.type_as(self.inv_freq)), len(self.inv_freq)
|
||||
freqs = matmul(seq.type_as(self.inv_freq).reshape(i, 1), self.inv_freq.reshape(1, j))
|
||||
return torch.cat((freqs, freqs), dim=-1)
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
env OMP_NUM_THREADS=12 torchrun --nproc_per_node 8 --master_port 29501 train.py --config palm_config.py
|
|
@ -9,6 +9,16 @@ from palm_pytorch import PaLM
|
|||
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from packaging import version
|
||||
|
||||
import colossalai
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
|
||||
from colossalai.utils import MultiTimer, get_current_device
|
||||
from colossalai.nn.parallel import ZeroDDP
|
||||
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
|
||||
from colossalai.nn.parallel import GeminiDDP
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
|
||||
# constants
|
||||
|
||||
|
@ -20,6 +30,9 @@ VALIDATE_EVERY = 100
|
|||
GENERATE_EVERY = 500
|
||||
GENERATE_LENGTH = 512
|
||||
SEQ_LEN = 1024
|
||||
TPDEGREE = 2
|
||||
USE_SHARD_INIT = False
|
||||
placement = 'cpu'
|
||||
|
||||
# helpers
|
||||
|
||||
|
@ -37,16 +50,55 @@ def decode_token(token):
|
|||
def decode_tokens(tokens):
|
||||
return "".join(list(map(decode_token, tokens)))
|
||||
|
||||
# Gemini + ZeRO DDP
|
||||
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
|
||||
cai_version = colossalai.__version__
|
||||
if version.parse(cai_version) > version.parse("0.1.10"):
|
||||
from colossalai.nn.parallel import GeminiDDP
|
||||
model = GeminiDDP(model,
|
||||
device=get_current_device(),
|
||||
placement_policy=placememt_policy,
|
||||
pin_memory=True,
|
||||
search_range_mb=32)
|
||||
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
|
||||
from colossalai.gemini import ChunkManager, GeminiManager
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
|
||||
gemini_manager = GeminiManager(placememt_policy, chunk_manager)
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
pg,
|
||||
enable_distributed_storage=True,
|
||||
init_device=GeminiManager.get_default_device(placememt_policy))
|
||||
model = ZeroDDP(model, gemini_manager)
|
||||
else:
|
||||
raise NotImplemented(f"CAI version {cai_version} is not supported")
|
||||
return model
|
||||
|
||||
# instantiate GPT-like decoder model
|
||||
|
||||
parser = colossalai.get_default_parser()
|
||||
args = parser.parse_args()
|
||||
disable_existing_loggers()
|
||||
colossalai.launch_from_torch(config=args.config, seed=42)
|
||||
|
||||
|
||||
# instantiate GPT-like decoder model
|
||||
|
||||
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||
default_pg = ProcessGroup(tp_degree=TPDEGREE)
|
||||
default_dist_spec = ShardSpec([-1], [TPDEGREE]) if USE_SHARD_INIT else None
|
||||
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
|
||||
with ctx:
|
||||
model = PaLM(num_tokens=256,dim=512,depth=8)
|
||||
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
||||
model.cuda()
|
||||
|
||||
model = AutoregressiveWrapper(model, max_seq_len=2048)
|
||||
model.cuda()
|
||||
|
||||
# prepare enwik8 data
|
||||
|
||||
# model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||
|
||||
# model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
||||
# model.cuda()
|
||||
|
||||
with gzip.open("./data/enwik8.gz") as file:
|
||||
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
||||
trX, vaX = np.split(X, [int(90e6)])
|
||||
|
@ -74,9 +126,20 @@ val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
|
|||
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
|
||||
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
|
||||
|
||||
# optimizer
|
||||
#tensor_parallelize(model, pg)
|
||||
|
||||
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
||||
pg = default_pg
|
||||
# model = GeminiDDP(model,
|
||||
# device=get_current_device(),
|
||||
# placement_policy="auto",
|
||||
# pin_memory=True,
|
||||
# search_range_mb=32)
|
||||
model = gemini_zero_dpp(model, pg, placement)
|
||||
|
||||
#optimizer
|
||||
|
||||
optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
|
||||
#optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
||||
|
||||
# training
|
||||
|
||||
|
@ -89,8 +152,10 @@ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
|||
|
||||
print(f"training loss: {loss.item()}")
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||
optim.step()
|
||||
optim.zero_grad()
|
||||
# optim.step()
|
||||
# optim.zero_grad()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
if i % VALIDATE_EVERY == 0:
|
||||
model.eval()
|
||||
|
|
Loading…
Reference in New Issue