|
|
|
@ -9,6 +9,16 @@ from palm_pytorch import PaLM
|
|
|
|
|
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper |
|
|
|
|
from torch.nn import functional as F |
|
|
|
|
from torch.utils.data import DataLoader, Dataset |
|
|
|
|
from packaging import version |
|
|
|
|
|
|
|
|
|
import colossalai |
|
|
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext |
|
|
|
|
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec |
|
|
|
|
from colossalai.utils import MultiTimer, get_current_device |
|
|
|
|
from colossalai.nn.parallel import ZeroDDP |
|
|
|
|
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer |
|
|
|
|
from colossalai.nn.parallel import GeminiDDP |
|
|
|
|
from colossalai.logging import disable_existing_loggers, get_dist_logger |
|
|
|
|
|
|
|
|
|
# constants |
|
|
|
|
|
|
|
|
@ -20,6 +30,9 @@ VALIDATE_EVERY = 100
|
|
|
|
|
GENERATE_EVERY = 500 |
|
|
|
|
GENERATE_LENGTH = 512 |
|
|
|
|
SEQ_LEN = 1024 |
|
|
|
|
TPDEGREE = 2 |
|
|
|
|
USE_SHARD_INIT = False |
|
|
|
|
placement = 'cpu' |
|
|
|
|
|
|
|
|
|
# helpers |
|
|
|
|
|
|
|
|
@ -37,16 +50,55 @@ def decode_token(token):
|
|
|
|
|
def decode_tokens(tokens): |
|
|
|
|
return "".join(list(map(decode_token, tokens))) |
|
|
|
|
|
|
|
|
|
# Gemini + ZeRO DDP |
|
|
|
|
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"): |
|
|
|
|
cai_version = colossalai.__version__ |
|
|
|
|
if version.parse(cai_version) > version.parse("0.1.10"): |
|
|
|
|
from colossalai.nn.parallel import GeminiDDP |
|
|
|
|
model = GeminiDDP(model, |
|
|
|
|
device=get_current_device(), |
|
|
|
|
placement_policy=placememt_policy, |
|
|
|
|
pin_memory=True, |
|
|
|
|
search_range_mb=32) |
|
|
|
|
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"): |
|
|
|
|
from colossalai.gemini import ChunkManager, GeminiManager |
|
|
|
|
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32) |
|
|
|
|
gemini_manager = GeminiManager(placememt_policy, chunk_manager) |
|
|
|
|
chunk_manager = ChunkManager(chunk_size, |
|
|
|
|
pg, |
|
|
|
|
enable_distributed_storage=True, |
|
|
|
|
init_device=GeminiManager.get_default_device(placememt_policy)) |
|
|
|
|
model = ZeroDDP(model, gemini_manager) |
|
|
|
|
else: |
|
|
|
|
raise NotImplemented(f"CAI version {cai_version} is not supported") |
|
|
|
|
return model |
|
|
|
|
|
|
|
|
|
# instantiate GPT-like decoder model |
|
|
|
|
|
|
|
|
|
parser = colossalai.get_default_parser() |
|
|
|
|
args = parser.parse_args() |
|
|
|
|
disable_existing_loggers() |
|
|
|
|
colossalai.launch_from_torch(config=args.config, seed=42) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# instantiate GPT-like decoder model |
|
|
|
|
|
|
|
|
|
model = PaLM(num_tokens=256, dim=512, depth=8) |
|
|
|
|
default_pg = ProcessGroup(tp_degree=TPDEGREE) |
|
|
|
|
default_dist_spec = ShardSpec([-1], [TPDEGREE]) if USE_SHARD_INIT else None |
|
|
|
|
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg) |
|
|
|
|
with ctx: |
|
|
|
|
model = PaLM(num_tokens=256,dim=512,depth=8) |
|
|
|
|
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN) |
|
|
|
|
model.cuda() |
|
|
|
|
|
|
|
|
|
model = AutoregressiveWrapper(model, max_seq_len=2048) |
|
|
|
|
model.cuda() |
|
|
|
|
|
|
|
|
|
# prepare enwik8 data |
|
|
|
|
|
|
|
|
|
# model = PaLM(num_tokens=256, dim=512, depth=8) |
|
|
|
|
|
|
|
|
|
# model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN) |
|
|
|
|
# model.cuda() |
|
|
|
|
|
|
|
|
|
with gzip.open("./data/enwik8.gz") as file: |
|
|
|
|
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) |
|
|
|
|
trX, vaX = np.split(X, [int(90e6)]) |
|
|
|
@ -74,9 +126,20 @@ val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
|
|
|
|
|
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE)) |
|
|
|
|
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE)) |
|
|
|
|
|
|
|
|
|
# optimizer |
|
|
|
|
#tensor_parallelize(model, pg) |
|
|
|
|
|
|
|
|
|
pg = default_pg |
|
|
|
|
# model = GeminiDDP(model, |
|
|
|
|
# device=get_current_device(), |
|
|
|
|
# placement_policy="auto", |
|
|
|
|
# pin_memory=True, |
|
|
|
|
# search_range_mb=32) |
|
|
|
|
model = gemini_zero_dpp(model, pg, placement) |
|
|
|
|
|
|
|
|
|
#optimizer |
|
|
|
|
|
|
|
|
|
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) |
|
|
|
|
optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5) |
|
|
|
|
#optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) |
|
|
|
|
|
|
|
|
|
# training |
|
|
|
|
|
|
|
|
@ -89,8 +152,10 @@ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
|
|
|
|
|
|
|
|
|
print(f"training loss: {loss.item()}") |
|
|
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) |
|
|
|
|
optim.step() |
|
|
|
|
optim.zero_grad() |
|
|
|
|
# optim.step() |
|
|
|
|
# optim.zero_grad() |
|
|
|
|
optimizer.step() |
|
|
|
|
optimizer.zero_grad() |
|
|
|
|
|
|
|
|
|
if i % VALIDATE_EVERY == 0: |
|
|
|
|
model.eval() |
|
|
|
|