[example] make palm + GeminiDPP work (#2227)

pull/2228/head
Jiarui Fang 2022-12-29 14:28:31 +08:00 committed by GitHub
parent 63cc77173b
commit 2cdecc9f38
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 39 additions and 56 deletions

View File

@ -1,7 +1,7 @@
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import einsum, nn, matmul
from torch import einsum, matmul, nn
# normalization
# they use layernorm without bias, something that pytorch does not offer
@ -86,8 +86,6 @@ def FeedForward(dim, mult=4):
# attention
class Attention(nn.Module):
def __init__(self, dim, dim_head=64, heads=8):
@ -142,8 +140,6 @@ class Attention(nn.Module):
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1))
# split heads
# they use multi-query single-key-value attention, yet another Noam Shazeer paper
# they found no performance loss past a certain scale, and more efficient decoding obviously
@ -165,7 +161,7 @@ class Attention(nn.Module):
# similarity
#sim = einsum("b h i d, b j d -> b h i j", q, k)
sim = matmul(q.reshape(b, h*i, d), k.transpose(1,2))
sim = matmul(q.reshape(b, h * i, d), k.transpose(1, 2))
sim = sim.reshape(b, h, i, j)
# causal mask
@ -183,7 +179,7 @@ class Attention(nn.Module):
# aggregate values
#out = einsum("b h i j, b j d -> b h i d", attn, v)
out = matmul(attn.reshape(b_, h_*i_, j_), v)
out = matmul(attn.reshape(b_, h_ * i_, j_), v)
out = out.reshape(b_, h_, i_, d_)
# merge heads

View File

@ -1 +1 @@
env OMP_NUM_THREADS=12 torchrun --nproc_per_node 8 --master_port 29501 train.py --config palm_config.py
env OMP_NUM_THREADS=12 torchrun --nproc_per_node 4 --master_port 29501 train.py --config palm_config.py

View File

@ -5,38 +5,36 @@ import numpy as np
import torch
import torch.optim as optim
import tqdm
from packaging import version
from palm_pytorch import PaLM
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
from packaging import version
import colossalai
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
from colossalai.nn.parallel import GeminiDDP, ZeroDDP
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
from colossalai.utils import MultiTimer, get_current_device
from colossalai.nn.parallel import ZeroDDP
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
from colossalai.nn.parallel import GeminiDDP
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.utils.model.colo_init_context import ColoInitContext
# constants
NUM_BATCHES = int(1e5)
NUM_BATCHES = int(20)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
GRADIENT_ACCUMULATE_EVERY = 1
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 1024
TPDEGREE = 2
TPDEGREE = 1
USE_SHARD_INIT = False
placement = 'cpu'
# helpers
def cycle(loader):
while True:
for data in loader:
@ -50,6 +48,7 @@ def decode_token(token):
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
# Gemini + ZeRO DDP
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
cai_version = colossalai.__version__
@ -72,7 +71,8 @@ def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy:
else:
raise NotImplemented(f"CAI version {cai_version} is not supported")
return model
# instantiate GPT-like decoder model
parser = colossalai.get_default_parser()
@ -80,24 +80,15 @@ args = parser.parse_args()
disable_existing_loggers()
colossalai.launch_from_torch(config=args.config, seed=42)
# instantiate GPT-like decoder model
default_pg = ProcessGroup(tp_degree=TPDEGREE)
default_dist_spec = ShardSpec([-1], [TPDEGREE]) if USE_SHARD_INIT else None
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
with ctx:
model = PaLM(num_tokens=256,dim=512,depth=8)
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
model.cuda()
# prepare enwik8 data
# model = PaLM(num_tokens=256, dim=512, depth=8)
# model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
# model.cuda()
model = PaLM(num_tokens=256, dim=512, depth=8)
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
with gzip.open("./data/enwik8.gz") as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
@ -129,46 +120,42 @@ val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
#tensor_parallelize(model, pg)
pg = default_pg
# model = GeminiDDP(model,
# device=get_current_device(),
# placement_policy="auto",
# pin_memory=True,
# search_range_mb=32)
model = gemini_zero_dpp(model, pg, placement)
#optimizer
optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
#optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# training
model.train()
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
model.train()
for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
loss.backward()
optimizer.zero_grad()
loss = model(next(train_loader))
# loss.backward()
optimizer.backward(loss)
print(f"training loss: {loss.item()}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
# optim.step()
# optim.zero_grad()
optimizer.step()
optimizer.zero_grad()
if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader))
print(f"validation loss: {loss.item()}")
# TODO
# if i % VALIDATE_EVERY == 0:
# model.eval()
# with torch.no_grad():
# loss = model(next(val_loader))
# print(f"validation loss: {loss.item()}")
if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print(f"%s \n\n %s", (prime, "*" * 100))
# if i % GENERATE_EVERY == 0:
# model.eval()
# inp = random.choice(val_dataset)[:-1]
# prime = decode_tokens(inp)
# print(f"%s \n\n %s", (prime, "*" * 100))
sample = model.generate(inp[None, ...], GENERATE_LENGTH)
output_str = decode_tokens(sample[0])
print(output_str)
# sample = model.generate(inp[None, ...], GENERATE_LENGTH)
# output_str = decode_tokens(sample[0])
# print(output_str)