[inference] udpate example (#5053)

* udpate example

* fix run.sh
feature/inference-refactor
Xu Kai 2023-11-16 11:07:43 +08:00 committed by GitHub
parent 5446fb70c4
commit 20332a7a34
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 161 additions and 548 deletions

View File

@ -14,7 +14,14 @@ from .microbatch_manager import MicroBatchManager
PP_AXIS, TP_AXIS = 0, 1
_supported_models = ["LlamaForCausalLM", "BloomForCausalLM", "LlamaGPTQForCausalLM", "SmoothLlamaForCausalLM", "ChatGLMForConditionalGeneration"]
_supported_models = [
"LlamaForCausalLM",
"BloomForCausalLM",
"LlamaGPTQForCausalLM",
"SmoothLlamaForCausalLM",
"ChatGLMForConditionalGeneration",
]
class CaiInferEngine:
"""
@ -161,7 +168,7 @@ class CaiInferEngine:
enable_flash_attention=False,
enable_jit_fused=False,
enable_sequence_parallelism=False,
quant=self.quant,
extra_kwargs={"quant": self.quant},
)
shardformer = ShardFormer(shard_config=shardconfig)
shard_model, _ = shardformer.optimize(model, model_policy)

View File

@ -1,84 +0,0 @@
import argparse
import os
import time
import torch
from _utils import print_perf_stats
from transformers import BloomForCausalLM, BloomTokenizerFast
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def bench_bloom(args):
model_path = args.path
max_batch_size = args.batch_size
max_input_len = args.input_len
max_output_len = args.output_len
tokenizer = BloomTokenizerFast.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
model = BloomForCausalLM.from_pretrained(model_path, pad_token_id=tokenizer.eos_token_id)
model = model.half()
# init TPInferEngine and shard the original model
# To benchmark torch original, comment out the line of optimizing model
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
# prepare data for generation
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
input_tokens = {
"input_ids": torch.randint(10, 1000, (max_batch_size, max_input_len)),
"attention_mask": torch.ones((max_batch_size, max_input_len)),
}
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
print(f" input_tokens[{t}].shape: {input_tokens[t].shape}")
iters = 10
times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s")
times.append((end - start) / (out_len - max_input_len))
print_perf_stats(times, model.config, max_batch_size)
def check_bloom(rank, world_size, port, args):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
bench_bloom(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_bloom(args):
spawn(check_bloom, args.tp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
parser.add_argument("--input_len", type=int, default=1024, help="Maximum input length")
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
args = parser.parse_args()
test_bloom(args)

View File

@ -1,118 +0,0 @@
import argparse
import os
import time
import torch
from _utils import print_perf_stats
from transformers import AutoTokenizer
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration
from colossalai.testing import rerun_if_address_is_in_use, spawn
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def run_chatglm2_test(args):
chatglm2_model_path = args.path
max_batch_size = args.batch_size
max_input_len = args.input_len
max_output_len = args.output_len
args.test_mode
print("max_batch_size : " + str(max_batch_size))
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
model = ChatGLMForConditionalGeneration.from_pretrained(chatglm2_model_path, pad_token_id=tokenizer.eos_token_id)
model = model.half()
model.config
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=1, do_sample=False)
input_tokens = {
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
}
iters = 10
prefill_times = []
warmup = 3
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print("generation time {} s".format(str(end - start)))
print(out_len - max_input_len)
prefill_times.append((end - start) / (out_len - max_input_len))
prefill_times = prefill_times[warmup:]
prefill_time_avg = sum(prefill_times) / len(prefill_times)
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
times = []
decoder_times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print("generation time {} s".format(str(end - start)))
print(out_len - max_input_len)
times.append((end - start) / (out_len - max_input_len))
if args.test_mode == "decoder_test":
decoder_times.append((end - start - prefill_time_avg) / (out_len - max_input_len - 1))
times = times[warmup:]
latency = sum(times) / len(times)
print("total process latency is : " + str(latency) + " s")
print("total throughput is : " + str(1 / latency * max_batch_size))
if args.test_mode == "decoder_test":
decoder_times = decoder_times[warmup:]
latency = sum(decoder_times) / len(decoder_times)
print("decoder process latency is : " + str(latency) + " s")
print("decoder throughput is : " + str(1 / latency * max_batch_size))
print_perf_stats(times, model.config, max_batch_size)
def check_chatglm2(rank, world_size, port, args):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_chatglm2_test(args)
@rerun_if_address_is_in_use()
def test_chatglm2(args):
spawn(check_chatglm2, args.tp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
parser.add_argument("--input_len", type=int, default=256, help="Maximum input length")
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
parser.add_argument(
"--test_mode", type=str, help="Test mode", default="e2e_test", choices=["e2e_test", "decoder_test"]
)
args = parser.parse_args()
test_chatglm2(args)

View File

@ -1,119 +0,0 @@
import argparse
import os
import time
import torch
from _utils import print_perf_stats
from transformers import LlamaForCausalLM, LlamaTokenizer
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def run_llama_test(args):
llama_model_path = args.path
max_batch_size = args.batch_size
max_input_len = args.input_len
max_output_len = args.output_len
args.test_mode
print("max_batch_size : " + str(max_batch_size))
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
tokenizer.pad_token_id = tokenizer.unk_token_id
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.eos_token_id)
model = model.half()
model.config
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=1, do_sample=False)
input_tokens = {
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
}
iters = 10
prefill_times = []
warmup = 3
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print("generation time {} s".format(str(end - start)))
print(out_len - max_input_len)
prefill_times.append((end - start) / (out_len - max_input_len))
prefill_times = prefill_times[warmup:]
prefill_time_avg = sum(prefill_times) / len(prefill_times)
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
times = []
decoder_times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print("generation time {} s".format(str(end - start)))
print(out_len - max_input_len)
times.append((end - start) / (out_len - max_input_len))
if args.test_mode == "decoder_test":
decoder_times.append((end - start - prefill_time_avg) / (out_len - max_input_len - 1))
times = times[warmup:]
latency = sum(times) / len(times)
print("total process latency is : " + str(latency) + " s")
print("total throughput is : " + str(1 / latency * max_batch_size))
if args.test_mode == "decoder_test":
decoder_times = decoder_times[warmup:]
latency = sum(decoder_times) / len(decoder_times)
print("decoder process latency is : " + str(latency) + " s")
print("decoder throughput is : " + str(1 / latency * max_batch_size))
print_perf_stats(times, model.config, max_batch_size)
def check_llama(rank, world_size, port, args):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_llama_test(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_llama(args):
spawn(check_llama, args.tp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
parser.add_argument("-b", "--batch_size", type=int, default=32, help="Maximum batch size")
parser.add_argument("--input_len", type=int, default=1024, help="Maximum input length")
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
parser.add_argument(
"--test_mode", type=str, help="Test mode", default="e2e_test", choices=["e2e_test", "decoder_test"]
)
args = parser.parse_args()
test_llama(args)

View File

@ -1,4 +1,5 @@
import argparse
import os
import time
import torch
@ -6,14 +7,12 @@ import torch.distributed as dist
import transformers
import colossalai
from colossalai.inference import PPInferEngine
from colossalai.inference.pipeline.policies import LlamaModelInferPolicy
from colossalai.inference import CaiInferEngine, LlamaModelInferPolicy
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
GIGABYTE = 1024**3
MEGABYTE = 1024 * 1024
colossalai.launch_from_torch(config={})
def data_gen(batch_size: int = 4, seq_len: int = 512):
input_ids = torch.randint(10, 30000, (1, seq_len), dtype=torch.int32)
@ -28,6 +27,9 @@ def data_gen(batch_size: int = 4, seq_len: int = 512):
def print_details_info(timestamps, model_config, args, whole_end2end):
log_file_name = f"{args.log_path}/llama-{args.model}{args.dtype}_pp{args.pp_size}_{args.seq_len}_{args.output_len}_bsz{args.batch_size}_mbsz{args.mb_size}.log"
os.makedirs(os.path.dirname(log_file_name), exist_ok=True)
if dist.get_rank() == 0:
prefill = []
encoder = []
@ -39,13 +41,14 @@ def print_details_info(timestamps, model_config, args, whole_end2end):
)
end2end.append(timestamp[-1] - timestamp[0])
print(whole_end2end)
with open(
f"{args.log_path}/llama-{args.model}{args.dtype}_pp{args.pp_size}_{args.seq_len}_{args.new_length}_bsz{args.batch_size}_mbsz{args.mb_size}.log",
log_file_name,
"w+",
) as f:
mb_avg_end2end = sum(end2end) / len(end2end)
mb_avg_latency = mb_avg_end2end / (args.new_length * args.mb_size)
whole_avg_latency = whole_end2end / (args.new_length * args.batch_size)
mb_avg_latency = mb_avg_end2end / (args.output_len * args.mb_size)
whole_avg_latency = whole_end2end / (args.output_len * args.batch_size)
num_layers = getattr(model_config, "num_layers", model_config.num_hidden_layers)
num_parameters = num_layers * model_config.hidden_size * model_config.hidden_size * 12 / args.pp_size
if args.dtype in ["fp16", "bf16"]:
@ -54,7 +57,7 @@ def print_details_info(timestamps, model_config, args, whole_end2end):
num_bytes = 4
f.write(
f"llama-{args.model}{args.dtype}_pp{args.pp_size}, input_len:{args.seq_len}, output_len:{args.new_length}, bsz:{args.batch_size}, mbsz:{args.mb_size}\n"
f"llama-{args.model}{args.dtype}_pp{args.pp_size}, input_len:{args.seq_len}, output_len:{args.output_len}, bsz:{args.batch_size}, mbsz:{args.mb_size}\n"
)
f.write("Average prefill time: {0:8.2f} ms\n".format(sum(prefill) / len(prefill) * 1000))
f.write("Average encode time: {0:8.2f} ms\n".format(sum(encoder) / len(encoder) * 1000))
@ -76,7 +79,7 @@ def print_details_info(timestamps, model_config, args, whole_end2end):
memory_reserved = torch.cuda.memory_reserved()
max_memory_reserved = torch.cuda.max_memory_reserved()
with open(
f"{args.log_path}/llama-{args.model}{args.dtype}_pp{args.pp_size}_{args.seq_len}_{args.new_length}_bsz{args.batch_size}_mbsz{args.mb_size}.log",
log_file_name,
"a",
) as f:
f.write(
@ -90,18 +93,7 @@ def print_details_info(timestamps, model_config, args, whole_end2end):
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="toy", help="the size of model")
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size")
parser.add_argument("-s", "--seq_len", type=int, default=8, help="sequence length")
parser.add_argument("--new_length", type=int, default=4, help="new tokens length")
parser.add_argument("--mb_size", type=int, default=1, help="micro_batch_size")
parser.add_argument("--pp_size", type=int, default=2, help="pipeline size")
parser.add_argument("--log_path", type=str, default="./log", help="where to store the benchmark log")
parser.add_argument("--dtype", type=str, default="fp16", help="data type")
args = parser.parse_args()
def benchmark_inference(args):
if args.model == "toy":
model = transformers.LlamaForCausalLM(transformers.LlamaConfig(num_hidden_layers=8))
elif args.model == "7b":
@ -111,24 +103,50 @@ if __name__ == "__main__":
else:
raise NotImplementedError
engine = PPInferEngine(
engine = CaiInferEngine(
pp_size=args.pp_size,
tp_size=args.tp_size,
dtype=args.dtype,
micro_batch_size=args.mb_size,
new_length=args.new_length,
model=model,
model_policy=LlamaModelInferPolicy(),
verbose=True,
max_batch_size=args.mb_size,
max_input_len=args.seq_len,
max_output_len=args.seq_len + args.new_length + 256,
max_output_len=args.output_len,
)
data = data_gen(args.batch_size, args.seq_len)
torch.cuda.synchronize()
whole_end2end = time.time()
output, timestamps = engine.inference([data])
output, timestamps = engine.inference(data)
torch.cuda.synchronize()
whole_end2end = time.time() - whole_end2end
print_details_info(timestamps, model.config, args, whole_end2end)
def hybrid_inference(rank, world_size, port, args):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
benchmark_inference(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def benchmark(args):
spawn(hybrid_inference, nprocs=args.tp_size * args.pp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="toy", help="the size of model")
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size")
parser.add_argument("-s", "--seq_len", type=int, default=8, help="sequence length")
parser.add_argument("--mb_size", type=int, default=1, help="micro_batch_size")
parser.add_argument("--pp_size", type=int, default=2, help="pipeline size")
parser.add_argument("--tp_size", type=int, default=2, help="pipeline size")
parser.add_argument("--output_len", type=int, default=16, help="Output length")
parser.add_argument("--log_path", type=str, default="./log", help="where to store the benchmark log")
parser.add_argument("--dtype", type=str, default="fp16", help="data type")
args = parser.parse_args()
benchmark(args)

View File

@ -1,105 +0,0 @@
import argparse
import os
import time
import torch
from _utils import print_perf_stats
from auto_gptq import AutoGPTQForCausalLM
from transformers import BloomTokenizerFast
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def bench_bloom(args):
pretrained_model_dir = args.path
quantized_model_dir = args.quantized_path
max_batch_size = args.batch_size
max_input_len = args.input_len
max_output_len = args.output_len
tokenizer = BloomTokenizerFast.from_pretrained(pretrained_model_dir)
tokenizer.pad_token = tokenizer.eos_token
# load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(
quantized_model_dir, device=torch.cuda.current_device(), inject_fused_attention=False
)
model = model.half()
model_config = model.config
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
input_tokens = {
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
}
# init TPInferEngine and shard the original model
# To benchmark torch original, comment out the line of optimizing model
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False,
extra_kwargs={"inference_only": True, "quant": "gptq"},
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
# prepare data for generation
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
input_tokens = {
"input_ids": torch.randint(10, 1000, (max_batch_size, max_input_len)),
"attention_mask": torch.ones((max_batch_size, max_input_len)),
}
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
# print(f" input_tokens[{t}].shape: {input_tokens[t].shape}")
iters = 10
times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s")
times.append((end - start) / (out_len - max_input_len))
print_perf_stats(times, model_config, max_batch_size)
def check_bloom(rank, world_size, port, args):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
bench_bloom(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_bloom(args):
spawn(check_bloom, args.tp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
parser.add_argument("-q", "--quantized_path", type=str, help="Model path", required=True)
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
parser.add_argument("--input_len", type=int, default=1024, help="Maximum input length")
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
args = parser.parse_args()
test_bloom(args)

View File

@ -1,87 +0,0 @@
import argparse
import os
import time
import torch
from _utils import print_perf_stats
from auto_gptq import AutoGPTQForCausalLM
from transformers import LlamaTokenizer
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def run_llama_test(args):
pretrained_model_dir = args.path
quantized_model_dir = args.quantized_path
max_batch_size = args.batch_size
max_input_len = args.input_len
max_output_len = args.output_len
tokenizer = LlamaTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
# load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(
quantized_model_dir, device=torch.cuda.current_device(), inject_fused_attention=False
)
model_config = model.config
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False,
extra_kwargs={"inference_only": True, "quant": "gptq"},
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
input_tokens = {
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
}
iters = 10
times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s")
times.append((end - start) / (out_len - max_input_len))
print_perf_stats(times, model_config, max_batch_size)
def check_llama(rank, world_size, port, args):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_llama_test(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_llama(args):
spawn(check_llama, args.tp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
parser.add_argument("-q", "--quantized_path", type=str, help="Model path", required=True)
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
parser.add_argument("--input_len", type=int, default=1024, help="Maximum input length")
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
args = parser.parse_args()
test_llama(args)

View File

@ -0,0 +1,96 @@
import argparse
import time
import pytest
import torch
import torch.distributed as dist
import transformers
from transformers import LlamaForCausalLM, LlamaTokenizer
import colossalai
from colossalai.inference import CaiInferEngine, LlamaModelInferPolicy
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
def pipeline_inference_test(args):
llama_model_path = args.path
max_input_len = args.max_input_len
max_output_len = args.max_output_len
max_batch_size = args.batch_size
micro_batch_size = args.micro_batch_size
tp_size = args.tp_size
pp_size = args.pp_size
rank = dist.get_rank()
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
tokenizer.pad_token_id = tokenizer.unk_token_id
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.eos_token_id)
model = model.half()
model = transformers.LlamaForCausalLM(
transformers.LlamaConfig(
vocab_size=20000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4
)
)
engine = CaiInferEngine(
tp_size=tp_size,
pp_size=pp_size,
model=model,
model_policy=LlamaModelInferPolicy(),
max_output_len=max_output_len,
micro_batch_size=micro_batch_size,
)
input_tokens = {
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
}
iters = 10
warmup = 3
times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = engine.inference(input_tokens)
torch.cuda.synchronize()
end = time.time()
if rank == 0:
out_len = len(outputs[0])
print("generation time {} s".format(str(end - start)))
print(out_len)
times.append((end - start) / out_len)
if rank == 0:
times = times[warmup:]
latency = sum(times) / len(times)
print("total process latency is : " + str(latency) + " s")
print("total throughput is : " + str(1 / latency * max_batch_size))
def check_tp_pipeline_inference(rank, world_size, port, args):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_tp_pipeline_inference_test(args)
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_inference(args):
spawn(check_tp_pipeline_inference, nprocs=args.tp_size * args.pp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
parser.add_argument("-tp", "--tp_size", type=int, default=2, help="Tensor parallel size")
parser.add_argument("-pp", "--pp_size", type=int, default=2, help="Tensor parallel size")
parser.add_argument("-b", "--batch_size", type=int, default=8, help="Maximum batch size")
parser.add_argument("--max_input_len", type=int, default=32, help="Maximum input length")
parser.add_argument("--max_output_len", type=int, default=16, help="Maximum output length")
parser.add_argument("--micro_batch_size", type=int, default=2, help="Micro batch size")
args = parser.parse_args()
test_inference(args)

View File

@ -1,50 +1,55 @@
script_dir=$(cd "$(dirname "$0")" && pwd)
cd "${script_dir}"
# 7b, fp16, 2 gpu, 1024, 128
for BATCH_SIZE in 2 4 8 16; do
CUDA_VISIBLE_DEVICES=0,1 colossalai run --nproc_per_node 2 --master_port 29800 ./benchmark.py \
CUDA_VISIBLE_DEVICES=0,1,2,3 python ./benchmark.py \
--model="7b" \
--dtype="fp16" \
--batch_size=${BATCH_SIZE} \
--seq_len=1024 \
--new_length=128 \
--mb_size=$((${BATCH_SIZE}/2)) \
--pp_size=2
--pp_size=2 \
--tp_size=2
done
# 7b, fp16, 2 gpu, 512, 512
for BATCH_SIZE in 2 4 8 16 32; do
CUDA_VISIBLE_DEVICES=0,1 colossalai run --nproc_per_node 2 --master_port 29800 ./benchmark.py \
CUDA_VISIBLE_DEVICES=0,1,2,3 python ./benchmark.py \
--model="7b" \
--dtype="fp16" \
--batch_size=${BATCH_SIZE} \
--seq_len=512 \
--new_length=512 \
--mb_size=$((${BATCH_SIZE}/2)) \
--pp_size=2
--pp_size=2 \
--tp_size=2
done
# 7b, fp16, 2 gpu, 1024, 128
for BATCH_SIZE in 2 4 8; do
CUDA_VISIBLE_DEVICES=0,1 colossalai run --nproc_per_node 2 --master_port 29800 ./benchmark.py \
CUDA_VISIBLE_DEVICES=0,1,2,3 python ./benchmark.py \
--model="13b" \
--dtype="fp16" \
--batch_size=${BATCH_SIZE} \
--seq_len=1024 \
--new_length=128 \
--mb_size=$((${BATCH_SIZE}/2)) \
--pp_size=2
--pp_size=2 \
--tp_size=2
done
# 13b, fp16, 2 gpu, 512, 512
for BATCH_SIZE in 2 4 8 16; do
CUDA_VISIBLE_DEVICES=0,1 colossalai run --nproc_per_node 2 --master_port 29800 ./benchmark.py \
CUDA_VISIBLE_DEVICES=0,1,2,3 python ./benchmark.py \
--model="13b" \
--dtype="fp16" \
--batch_size=${BATCH_SIZE} \
--seq_len=512 \
--new_length=512 \
--mb_size=$((${BATCH_SIZE}/2)) \
--pp_size=2
--pp_size=2 \
--tp_size=2
done