Browse Source

[inference] update readme (#5051)

* update readme

* update readme

* fix architecture

* fix table

* fix table
feature/inference-refactor
Xu Kai 1 year ago committed by GitHub
parent
commit
5446fb70c4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 134
      colossalai/inference/README.md

134
colossalai/inference/README.md

@ -1,6 +1,14 @@
# 🚀 Colossal-Inference
## Table of contents
## Table of Contents
- [💡 Introduction](#introduction)
- [🔗 Design](#design)
- [🔨 Usage](#usage)
- [Quick start](#quick-start)
- [Example](#example)
- [📊 Performance](#performance)
## Introduction
@ -15,15 +23,16 @@ Colossal Inference is composed of two main components:
1. `cache manager`: serves as a memory manager to help manage the key-value cache, it integrates functions such as memory allocation, indexing and release.
2. `batch_infer_info`: holds all essential elements of a batch inference, which is updated every batch.
3. High-level inference engine combined with `Shardformer`: it allows our inference framework to easily invoke and utilize various parallel methods.
1. `engine.TPInferEngine`: it is a high level interface that integrates with shardformer, especially for multi-card (tensor parallel) inference:
1. `HybridEngine`: it is a high level interface that integrates with shardformer, especially for multi-card (tensor parallel, pipline parallel) inference:
2. `modeling.llama.LlamaInferenceForwards`: contains the `forward` methods for llama inference. (in this case : llama)
3. `policies.llama.LlamaModelInferPolicy` : contains the policies for `llama` models, which is used to call `shardformer` and segmentate the model forward in tensor parallelism way.
## Pipeline of inference:
## Architecture of inference:
In this section we discuss how the colossal inference works and integrates with the `Shardformer` . The details can be found in our codes.
![Colossal-Inference](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/Colossal-inference.png)
![Colossal-Inference](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/inference-arch.png)
## Roadmap of our implementation
@ -35,12 +44,14 @@ In this section we discuss how the colossal inference works and integrates with
- [x] context forward
- [x] token forward
- [x] support flash-decoding
- [ ] Replace the kernels with `faster-transformer` in token-forward stage
- [ ] Support all models
- [x] Llama
- [x] Llama-2
- [x] Bloom
- [x] Chatglm2
- [ ] Quantization
- [x] GPTQ
- [x] SmoothQuant
- [ ] Benchmarking for all models
## Get started
@ -64,12 +75,12 @@ triton
flash-attention
# install lightllm since we depend on lightllm triton kernels
git clone https://github.com/ModelTC/lightllm
git clone https://github.com/ModelTC/lightllm
cd lightllm
git checkout 28c1267cfca536b7b4f28e921e03de735b003039
pip3 install -e .
# also, install xformers from source:
# also, install xformers from source:
pip install ninja
# Set TORCH_CUDA_ARCH_LIST if running and building on different GPU types
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
@ -90,18 +101,29 @@ cd /path/to/CollossalAI
pip install -e .
# install lightllm
git clone https://github.com/ModelTC/lightllm
git clone https://github.com/ModelTC/lightllm
cd lightllm
git checkout 28c1267cfca536b7b4f28e921e03de735b003039
pip3 install -e .
# install xformers from source
# install xformers from source
pip install ninja
# Set TORCH_CUDA_ARCH_LIST if running and building on different GPU types
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
# for gptq quantization
pip install auto-gptq
# for smoothquant quantization
git clone --recurse-submodules https://github.com/Guangxuan-Xiao/torch-int.git
pip install -r requirements.txt
source environment.sh
bash build_cutlass.sh
python setup.py install
```
### Dive into fast-inference!
## Usage
### Quick start
example files are in
@ -110,6 +132,44 @@ cd colossalai.examples
python xx
```
### Example
```python
from colossalai.inference import PPInferEngine
from colossalai.inference.pipeline.policies import LlamaModelInferPolicy
import colossalai
from transformers import LlamaForCausalLM, LlamaTokenizer
colossalai.launch_from_torch(config={})
model = LlamaForCausalLM.from_pretrained("/path/to/model")
tokenizer = LlamaTokenizer.from_pretrained("/path/to/model")
input = ["Introduce a landmark in London","Introduce a landmark in Singapore"]
data = tokenizer(input, return_tensors='pt')
output = inferengine.inference(data.to('cuda'))
print(tokenizer.batch_decode(output))
tp_size=2
pp_size=2
max_output_len=32
micro_batch_size=1
engine = CaiInferEngine(
tp_size=tp_size,
pp_size=pp_size,
model=model,
model_policy=LlamaModelInferPolicy(),
max_output_len=max_output_len,
micro_batch_size=micro_batch_size,
)
output = engine.inference(data)
if dist.get_rank() == 0:
assert len(output[0]) == max_output_len, f"{len(output)}, {max_output_len}"
```
## Performance
### environment:
@ -122,7 +182,9 @@ For various models, experiments were conducted using multiple batch sizes under
Currently the stats below are calculated based on A100 (single GPU), and we calculate token latency based on average values of context-forward and decoding forward process, which means we combine both of processes to calculate token generation times. We are actively developing new features and methods to further optimize the performance of LLM models. Please stay tuned.
#### Llama
### Tensor Parallelism Inference
##### Llama
| batch_size | 8 | 16 | 32 |
| :---------------------: | :----: | :----: | :----: |
@ -131,7 +193,7 @@ Currently the stats below are calculated based on A100 (single GPU), and we calc
![llama](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/Infer-llama7b.png)
### Bloom
#### Bloom
| batch_size | 8 | 16 | 32 |
| :---------------------: | :----: | :----: | :----: |
@ -140,4 +202,50 @@ Currently the stats below are calculated based on A100 (single GPU), and we calc
![bloom](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/Infer-bloom7b.png)
### Pipline Parallelism Inference
We conducted multiple benchmark tests to evaluate the performance. We compared the inference `latency` and `throughputs` between `Pipeline Inference` and `hugging face` pipeline. The test environment is 2 * A10, 20G / 2 * A800, 80G. We set input length=1024, output length=128.
#### A10 7b, fp16
| batch_size(micro_batch size)| 2(1) | 4(2) | 8(4) | 16(8) | 32(8) | 32(16)|
| :-------------------------: | :---: | :---:| :---: | :---: | :---: | :---: |
| Pipeline Inference | 40.35 | 77.10| 139.03| 232.70| 257.81| OOM |
| Hugging Face | 41.43 | 65.30| 91.93 | 114.62| OOM | OOM |
![ppllama7b](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/pp-a10-llama7b.png)
#### A10 13b, fp16
| batch_size(micro_batch size)| 2(1) | 4(2) | 8(4) | 16(4) |
| :---: | :---: | :---: | :---: | :---: |
| Pipeline Inference | 25.39 | 47.09 | 83.7 | 89.46 |
| Hugging Face | 23.48 | 37.59 | 53.44 | OOM |
![ppllama13](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/pp-a10-llama13b.png)
#### A800 7b, fp16
| batch_size(micro_batch size) | 2(1) | 4(2) | 8(4) | 16(8) | 32(16) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pipeline Inference| 57.97 | 110.13 | 213.33 | 389.86 | 670.12 |
| Hugging Face | 42.44 | 76.5 | 151.97 | 212.88 | 256.13 |
![ppllama7b_a800](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/pp-a800-llama7b.png)
### Quantization LLama
| batch_size | 8 | 16 | 32 |
| :---------------------: | :----: | :----: | :----: |
| auto-gptq | 199.20 | 232.56 | 253.26 |
| smooth-quant | 142.28 | 222.96 | 300.59 |
| colossal-gptq | 231.98 | 388.87 | 573.03 |
![bloom](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference/inference-quant.png)
The results of more models are coming soon!

Loading…
Cancel
Save