remove perf log, unrelated file and so on

pull/5733/head
genghaozhe 6 months ago
parent 5c6c5d6be3
commit 1ec92d29af

@ -83,7 +83,7 @@ class ChunkManager:
if chunk_group: if chunk_group:
# the chunk group is not empty # the chunk group is not empty
# close the last chunk # close the last chunk
self.__close_one_chunk(chunk_group[-1]) # chunk[-1] 满了所以关闭不能再添加然后同时scatter到ZeRO PG中 self.__close_one_chunk(chunk_group[-1])
if tensor.numel() > chunk_size: if tensor.numel() > chunk_size:
chunk_size = tensor.numel() chunk_size = tensor.numel()

@ -33,7 +33,7 @@ class GeminiZeROHook(ColoParamOpHook):
all_chunks = self._chunk_manager.get_chunks(params) all_chunks = self._chunk_manager.get_chunks(params)
# wait for prefetched chunks, filter those are not prefetched # wait for prefetched chunks, filter those are not prefetched
chunks_fetch_sync = self._gemini_manager.wait_chunks(all_chunks) # 当前要fetch的chunk chunks_fetch_sync = self._gemini_manager.wait_chunks(all_chunks)
# transfer state # transfer state
for p in params: for p in params:

@ -125,7 +125,7 @@ class GeminiManager:
self._async_works[chunk].wait() self._async_works[chunk].wait()
del self._async_works[chunk] del self._async_works[chunk]
else: else:
non_prefetched_chunks.append(chunk) # 没在之前prefetch过现在要prefetch的chunk non_prefetched_chunks.append(chunk)
return tuple(non_prefetched_chunks) return tuple(non_prefetched_chunks)
def add_work(self, chunk: Chunk, work: dist.Work): def add_work(self, chunk: Chunk, work: dist.Work):

@ -113,10 +113,8 @@ class StaticPlacementPolicy(PlacementPolicy):
def get_prefetch_chunks(self) -> List[Chunk]: def get_prefetch_chunks(self) -> List[Chunk]:
if self.gemini_manager.is_warmup(): # no prefetch during warmup since we need compute_list if self.gemini_manager.is_warmup(): # no prefetch during warmup since we need compute_list
return [] return []
# 最多有多少个异步的work
can_prefetch = self.max_prefetch - len(self.gemini_manager._async_works) can_prefetch = self.max_prefetch - len(self.gemini_manager._async_works)
prefetch = [] prefetch = []
# static炸就炸了dynamic可能需要我们要先分析当前运行时的内存情况分配空间或者淘汰块
for i in range(self.gemini_manager.compute_idx + 1, len(self.gemini_manager.compute_list)): for i in range(self.gemini_manager.compute_idx + 1, len(self.gemini_manager.compute_list)):
for chunk in self.gemini_manager.compute_list[i]: for chunk in self.gemini_manager.compute_list[i]:
if len(prefetch) >= can_prefetch: if len(prefetch) >= can_prefetch:

@ -1,142 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linear(in_features=10, out_features=5, bias=False) 50\n",
"Linear(in_features=5, out_features=10, bias=False) 50\n",
"Linear(in_features=10, out_features=10, bias=False) 100\n"
]
}
],
"source": [
"class Toy(nn.Module):\n",
" \n",
" def __init__(self):\n",
" super(Toy, self).__init__()\n",
" self.fc1 = nn.Linear(10,5, bias=False)\n",
" self.m3 = nn.Sequential(nn.Linear(5, 10, bias=False), nn.Linear(10,10, bias=False))\n",
"\n",
"t = Toy()\n",
"for mod in t.modules():\n",
" for p in mod.parameters(recurse=False):\n",
" print(mod, p.numel())"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([5, 10]) 50\n",
"torch.Size([10, 5]) 50\n",
"torch.Size([10, 10]) 100\n"
]
}
],
"source": [
"for p in t.parameters():\n",
" print(p.shape, p.numel())"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'224'"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conf_str = torch.__config__.parallel_info()\n",
"inter_str = conf_str.split(\"hardware_concurrency() : \")[1]\n",
"max_concurrency = inter_str.split(\"\\n\")[0]\n",
"max_concurrency"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 0\n",
"0 1\n",
"0 2\n",
"1 0\n",
"1 1\n",
"1 2\n"
]
}
],
"source": [
"for i in range(3):\n",
" for j in range(3):\n",
" print(i, j)\n",
" if i == 1 and j == 2:break\n",
" else:\n",
" continue\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "colossalai-py310",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -66,18 +66,18 @@ class GPTLMLoss(nn.Module):
def get_cpu_mem(): def get_cpu_mem():
return psutil.Process().memory_info().rss / 1024**2 # 返回值是B转换成MB return psutil.Process().memory_info().rss / 1024**2
def get_gpu_mem(): def get_gpu_mem():
return torch.cuda.memory_allocated() / 1024**2 # 转换成MB return torch.cuda.memory_allocated() / 1024**2
def get_mem_info(prefix=""): def get_mem_info(prefix=""):
return f"{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB" return f"{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB"
def get_model_size(model: nn.Module): # 得到模型参数量 def get_model_size(model: nn.Module):
total_numel = 0 total_numel = 0
for module in model.modules(): for module in model.modules():
for p in module.parameters(recurse=False): for p in module.parameters(recurse=False):

@ -26,7 +26,7 @@ PLACEMENT_CONFIGS = [
"offload_optim_frac": 1.0, "offload_optim_frac": 1.0,
"offload_param_frac": 1.0, "offload_param_frac": 1.0,
}, # zero3-offload-all }, # zero3-offload-all
# {"placement_policy": "auto"}, {"placement_policy": "auto"},
] ]
# this model is large enough to slice to chunks # this model is large enough to slice to chunks

Loading…
Cancel
Save