Browse Source

add benchmark

pull/2364/head
oahzxl 2 years ago
parent
commit
1d7ca02301
  1. 79
      autochunk_benchmark.py
  2. 16
      chunk_codegen.py

79
autochunk_benchmark.py

@ -0,0 +1,79 @@
import copy
import torch
import torch.nn.functional as F
import pytest
import torch.fx
import torch.multiprocessing as mp
from torch.fx import GraphModule
from colossalai.fx import ColoTracer
import colossalai
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp, TensorMetadata
from colossalai.fx.profiler import MetaTensor
from evoformer.evoformer import evoformer_base
from chunk_codegen import ChunkCodeGen
import time
def _benchmark_evoformer(model: torch.nn.Module, node, pair):
loop = 10
with torch.no_grad():
for _ in range(loop // 4):
model(node, pair)
torch.cuda.synchronize()
time1 = time.time()
for _ in range(loop):
model(node, pair)
torch.cuda.synchronize()
time2 = time.time()
return (time2 - time1) / loop
def benchmark_evoformer():
# data
msa_len = 300
pair_len = 800
node = torch.randn(1, msa_len, pair_len, 256).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
# build gm model
max_memory = 3000 # MB
model = evoformer_base().cuda()
# trace the module and replace codegen
graph = ColoTracer().trace(
model,
meta_args={
"node": node.to(torch.device("meta")),
"pair": pair.to(torch.device("meta")),
},
)
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
# now run it twice to get meta info in graph module, not necessary
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
# set code_gen
codegen = ChunkCodeGen(gm_prop, max_memory)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph)
gm.recompile()
# print
code = graph.python_code("self").src
print(code)
time_gm = _benchmark_evoformer(gm, node, pair)
print("gm %.4fs" % time_gm)
time_openfold = _benchmark_evoformer(model, node, pair)
print("openfold %.4fs" % time_openfold)
if __name__ == "__main__":
benchmark_evoformer()

16
chunk_codegen.py

@ -1398,13 +1398,14 @@ class MemoryEstimator(object):
class ChunkSelector(object):
def __init__(
self, index_tracer: IndexTracer, memory_estimator: MemoryEstimator, stratge
self, index_tracer: IndexTracer, memory_estimator: MemoryEstimator, stratge, max_memory=None
):
self.index_tracer = index_tracer
self.memory_estimator = memory_estimator
assert stratge in ["min_memory", "fit_memory"]
assert (stratge == "fit_memory" and max_memory is not None) or stratge != "fit_memory"
self.stratge = stratge
self.max_memory = 600 # MB
self.max_memory = max_memory # MB
def _select_best_chunk_region(
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
@ -1556,13 +1557,13 @@ class ChunkSelector(object):
class ChunkRegionSearch(object):
def __init__(self, gm) -> None:
def __init__(self, gm, max_memory=None) -> None:
self.gm = gm
self.index_tracer = IndexTracer(list(gm.graph.nodes))
self.index_tracer.trace_index()
self.memory_estimator = MemoryEstimator(self.index_tracer)
self.chunk_selector = ChunkSelector(
self.index_tracer, self.memory_estimator, stratge="fit_memory"
self.index_tracer, self.memory_estimator, stratge="fit_memory", max_memory=max_memory
)
def _find_peak_node(self, mem_peak):
@ -1897,6 +1898,7 @@ def emit_code_with_chunk(
delete_unused_value_func,
meta_nodes,
meta_graph,
max_memory=None,
):
"""Emit code with nested activation checkpoint
When we detect some of the node.activation_checkpoint is a List, we will use
@ -1912,7 +1914,7 @@ def emit_code_with_chunk(
node_list = list(nodes)
# find the chunk regions
chunk_region_search = ChunkRegionSearch(meta_graph)
chunk_region_search = ChunkRegionSearch(meta_graph, max_memory)
chunk_search = chunk_region_search.search_region()
chunk_regions = [i["region"] for i in chunk_search]
@ -1989,9 +1991,10 @@ def emit_code_with_chunk(
if CODEGEN_AVAILABLE:
class ChunkCodeGen(CodeGen):
def __init__(self, meta_graph):
def __init__(self, meta_graph, max_memory=None):
super().__init__()
self.meta_graph = meta_graph
self.max_memory = max_memory
self.meta_node = list(meta_graph.graph.nodes)
def _gen_python_code(
@ -2230,6 +2233,7 @@ if CODEGEN_AVAILABLE:
delete_unused_values,
self.meta_node,
self.meta_graph,
self.max_memory
)
if len(body) == 0:

Loading…
Cancel
Save