mirror of https://github.com/hpcaitech/ColossalAI
add benchmark
parent
fff493c202
commit
1d7ca02301
|
@ -0,0 +1,79 @@
|
|||
import copy
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import pytest
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
from torch.fx import GraphModule
|
||||
from colossalai.fx import ColoTracer
|
||||
import colossalai
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp, TensorMetadata
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from evoformer.evoformer import evoformer_base
|
||||
from chunk_codegen import ChunkCodeGen
|
||||
import time
|
||||
|
||||
|
||||
def _benchmark_evoformer(model: torch.nn.Module, node, pair):
|
||||
loop = 10
|
||||
with torch.no_grad():
|
||||
for _ in range(loop // 4):
|
||||
model(node, pair)
|
||||
torch.cuda.synchronize()
|
||||
time1 = time.time()
|
||||
for _ in range(loop):
|
||||
model(node, pair)
|
||||
torch.cuda.synchronize()
|
||||
time2 = time.time()
|
||||
return (time2 - time1) / loop
|
||||
|
||||
|
||||
def benchmark_evoformer():
|
||||
# data
|
||||
msa_len = 300
|
||||
pair_len = 800
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
|
||||
# build gm model
|
||||
max_memory = 3000 # MB
|
||||
model = evoformer_base().cuda()
|
||||
# trace the module and replace codegen
|
||||
graph = ColoTracer().trace(
|
||||
model,
|
||||
meta_args={
|
||||
"node": node.to(torch.device("meta")),
|
||||
"pair": pair.to(torch.device("meta")),
|
||||
},
|
||||
)
|
||||
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
|
||||
interp = MetaInfoProp(gm_prop)
|
||||
interp.propagate(
|
||||
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
|
||||
)
|
||||
# now run it twice to get meta info in graph module, not necessary
|
||||
gm = torch.fx.GraphModule(model, graph)
|
||||
interp = MetaInfoProp(gm)
|
||||
interp.propagate(
|
||||
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
|
||||
)
|
||||
# set code_gen
|
||||
codegen = ChunkCodeGen(gm_prop, max_memory)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
gm.recompile()
|
||||
# print
|
||||
code = graph.python_code("self").src
|
||||
print(code)
|
||||
|
||||
time_gm = _benchmark_evoformer(gm, node, pair)
|
||||
print("gm %.4fs" % time_gm)
|
||||
time_openfold = _benchmark_evoformer(model, node, pair)
|
||||
print("openfold %.4fs" % time_openfold)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
benchmark_evoformer()
|
|
@ -1398,13 +1398,14 @@ class MemoryEstimator(object):
|
|||
|
||||
class ChunkSelector(object):
|
||||
def __init__(
|
||||
self, index_tracer: IndexTracer, memory_estimator: MemoryEstimator, stratge
|
||||
self, index_tracer: IndexTracer, memory_estimator: MemoryEstimator, stratge, max_memory=None
|
||||
):
|
||||
self.index_tracer = index_tracer
|
||||
self.memory_estimator = memory_estimator
|
||||
assert stratge in ["min_memory", "fit_memory"]
|
||||
assert (stratge == "fit_memory" and max_memory is not None) or stratge != "fit_memory"
|
||||
self.stratge = stratge
|
||||
self.max_memory = 600 # MB
|
||||
self.max_memory = max_memory # MB
|
||||
|
||||
def _select_best_chunk_region(
|
||||
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
||||
|
@ -1556,13 +1557,13 @@ class ChunkSelector(object):
|
|||
|
||||
|
||||
class ChunkRegionSearch(object):
|
||||
def __init__(self, gm) -> None:
|
||||
def __init__(self, gm, max_memory=None) -> None:
|
||||
self.gm = gm
|
||||
self.index_tracer = IndexTracer(list(gm.graph.nodes))
|
||||
self.index_tracer.trace_index()
|
||||
self.memory_estimator = MemoryEstimator(self.index_tracer)
|
||||
self.chunk_selector = ChunkSelector(
|
||||
self.index_tracer, self.memory_estimator, stratge="fit_memory"
|
||||
self.index_tracer, self.memory_estimator, stratge="fit_memory", max_memory=max_memory
|
||||
)
|
||||
|
||||
def _find_peak_node(self, mem_peak):
|
||||
|
@ -1897,6 +1898,7 @@ def emit_code_with_chunk(
|
|||
delete_unused_value_func,
|
||||
meta_nodes,
|
||||
meta_graph,
|
||||
max_memory=None,
|
||||
):
|
||||
"""Emit code with nested activation checkpoint
|
||||
When we detect some of the node.activation_checkpoint is a List, we will use
|
||||
|
@ -1912,7 +1914,7 @@ def emit_code_with_chunk(
|
|||
node_list = list(nodes)
|
||||
|
||||
# find the chunk regions
|
||||
chunk_region_search = ChunkRegionSearch(meta_graph)
|
||||
chunk_region_search = ChunkRegionSearch(meta_graph, max_memory)
|
||||
chunk_search = chunk_region_search.search_region()
|
||||
|
||||
chunk_regions = [i["region"] for i in chunk_search]
|
||||
|
@ -1989,9 +1991,10 @@ def emit_code_with_chunk(
|
|||
if CODEGEN_AVAILABLE:
|
||||
|
||||
class ChunkCodeGen(CodeGen):
|
||||
def __init__(self, meta_graph):
|
||||
def __init__(self, meta_graph, max_memory=None):
|
||||
super().__init__()
|
||||
self.meta_graph = meta_graph
|
||||
self.max_memory = max_memory
|
||||
self.meta_node = list(meta_graph.graph.nodes)
|
||||
|
||||
def _gen_python_code(
|
||||
|
@ -2230,6 +2233,7 @@ if CODEGEN_AVAILABLE:
|
|||
delete_unused_values,
|
||||
self.meta_node,
|
||||
self.meta_graph,
|
||||
self.max_memory
|
||||
)
|
||||
|
||||
if len(body) == 0:
|
||||
|
|
Loading…
Reference in New Issue