mirror of https://github.com/hpcaitech/ColossalAI
take apart chunk code gen
parent
d1f0773182
commit
1a6d2a740b
|
@ -0,0 +1,497 @@
|
||||||
|
from typing import Any, Callable, Dict, Iterable, List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.fx.graph import (
|
||||||
|
CodeGen,
|
||||||
|
PythonCode,
|
||||||
|
_custom_builtins,
|
||||||
|
_CustomBuiltin,
|
||||||
|
_format_target,
|
||||||
|
_is_from_torch,
|
||||||
|
_Namespace,
|
||||||
|
_origin_type_map,
|
||||||
|
inplace_methods,
|
||||||
|
magic_methods,
|
||||||
|
)
|
||||||
|
from torch.fx.node import Argument, Node, _get_qualified_name, _type_repr, map_arg
|
||||||
|
|
||||||
|
import colossalai
|
||||||
|
|
||||||
|
from .chunk_region_search import ChunkRegionSearch
|
||||||
|
from .utils import delete_free_var_from_last_use, find_idx_by_name, get_node_shape
|
||||||
|
|
||||||
|
CODEGEN_AVAILABLE = True
|
||||||
|
__all__ = ["AutoChunkCodeGen"]
|
||||||
|
|
||||||
|
|
||||||
|
def _gen_chunk_slice_dim(chunk_dim, chunk_idx_name, shape):
|
||||||
|
new_shape = "["
|
||||||
|
for idx, i in enumerate(shape):
|
||||||
|
if idx == chunk_dim:
|
||||||
|
new_shape += "%s:%s + chunk_size" % (chunk_idx_name, chunk_idx_name)
|
||||||
|
else:
|
||||||
|
new_shape += ":"
|
||||||
|
new_shape += ", "
|
||||||
|
new_shape = new_shape[:-2] + "]"
|
||||||
|
return new_shape
|
||||||
|
|
||||||
|
|
||||||
|
def _gen_loop_start(chunk_input, chunk_output, chunk_ouput_dim, chunk_size=2):
|
||||||
|
input_node = chunk_input[0]
|
||||||
|
out_shape = get_node_shape(chunk_output)
|
||||||
|
out_str = str(list(out_shape))
|
||||||
|
context = (
|
||||||
|
"chunk_result = torch.empty(%s, dtype=%s.dtype, device=%s.device); chunk_size = %d\nfor chunk_idx in range"
|
||||||
|
% (out_str, input_node.name, input_node.name, chunk_size)
|
||||||
|
)
|
||||||
|
context += "(0, %d, chunk_size):\n" % (out_shape[chunk_ouput_dim])
|
||||||
|
return context
|
||||||
|
|
||||||
|
|
||||||
|
def _gen_loop_end(
|
||||||
|
chunk_inputs, chunk_non_compute_inputs, chunk_outputs, chunk_outputs_dim, node_list
|
||||||
|
):
|
||||||
|
chunk_outputs_name = chunk_outputs.name
|
||||||
|
chunk_outputs_idx = find_idx_by_name(chunk_outputs_name, node_list)
|
||||||
|
chunk_output_shape = chunk_outputs.meta["tensor_meta"].shape
|
||||||
|
chunk_slice = _gen_chunk_slice_dim(
|
||||||
|
chunk_outputs_dim, "chunk_idx", chunk_output_shape
|
||||||
|
)
|
||||||
|
context = " chunk_result%s = %s; %s = None\n" % (
|
||||||
|
chunk_slice,
|
||||||
|
chunk_outputs_name,
|
||||||
|
chunk_outputs_name,
|
||||||
|
)
|
||||||
|
context += (
|
||||||
|
chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None"
|
||||||
|
)
|
||||||
|
|
||||||
|
# determine if its the last use for chunk input
|
||||||
|
for chunk_input in chunk_inputs + chunk_non_compute_inputs:
|
||||||
|
if all(
|
||||||
|
[
|
||||||
|
find_idx_by_name(user.name, node_list) <= chunk_outputs_idx
|
||||||
|
for user in chunk_input.users.keys()
|
||||||
|
]
|
||||||
|
):
|
||||||
|
context += "; %s = None" % chunk_input.name
|
||||||
|
|
||||||
|
context += "\n"
|
||||||
|
return context
|
||||||
|
|
||||||
|
|
||||||
|
def _replace_name(context, name_from, name_to):
|
||||||
|
patterns = [(" ", " "), (" ", "."), (" ", ","), ("(", ")"), ("(", ","), (" ", ")")]
|
||||||
|
for p in patterns:
|
||||||
|
source = p[0] + name_from + p[1]
|
||||||
|
target = p[0] + name_to + p[1]
|
||||||
|
if source in context:
|
||||||
|
context = context.replace(source, target)
|
||||||
|
return context
|
||||||
|
|
||||||
|
|
||||||
|
def _replace_reshape_size(context, node_name, reshape_size_dict):
|
||||||
|
if node_name not in reshape_size_dict:
|
||||||
|
return context
|
||||||
|
for size_name, size_value in reshape_size_dict[node_name].items():
|
||||||
|
context = context.replace(size_name, size_value)
|
||||||
|
return context
|
||||||
|
|
||||||
|
|
||||||
|
def emit_code_with_chunk(
|
||||||
|
body,
|
||||||
|
nodes,
|
||||||
|
emit_node_func,
|
||||||
|
delete_unused_value_func,
|
||||||
|
chunk_region_search,
|
||||||
|
chunk_infos,
|
||||||
|
):
|
||||||
|
"""Emit code with nested activation checkpoint
|
||||||
|
When we detect some of the node.activation_checkpoint is a List, we will use
|
||||||
|
this function to emit the activation checkpoint codes.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
body: forward code
|
||||||
|
ckpt_func: checkpoint functions code
|
||||||
|
nodes: graph.nodes
|
||||||
|
emit_node_func: function to emit node
|
||||||
|
delete_unused_value_func: function to remove the unused value
|
||||||
|
"""
|
||||||
|
node_list = list(nodes)
|
||||||
|
|
||||||
|
chunk_regions = [i["region"] for i in chunk_infos]
|
||||||
|
chunk_starts = [i[0] for i in chunk_regions]
|
||||||
|
chunk_ends = [i[1] for i in chunk_regions]
|
||||||
|
|
||||||
|
chunk_inputs = [i["inputs"] for i in chunk_infos]
|
||||||
|
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
|
||||||
|
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_infos]
|
||||||
|
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
|
||||||
|
j.name for i in chunk_inputs_non_chunk for j in i
|
||||||
|
]
|
||||||
|
|
||||||
|
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
|
||||||
|
chunk_outputs_dim = [i["outputs_dim"] for i in chunk_infos]
|
||||||
|
|
||||||
|
node_list = chunk_region_search.index_tracer.reorder_node_list(node_list)
|
||||||
|
node_idx = 0
|
||||||
|
region_idx = 0
|
||||||
|
within_chunk_region = False
|
||||||
|
|
||||||
|
while node_idx < len(node_list):
|
||||||
|
node = node_list[node_idx]
|
||||||
|
|
||||||
|
if node_idx in chunk_starts:
|
||||||
|
within_chunk_region = True
|
||||||
|
region_idx = chunk_starts.index(node_idx)
|
||||||
|
body.append(
|
||||||
|
_gen_loop_start(
|
||||||
|
chunk_inputs[region_idx],
|
||||||
|
chunk_outputs[region_idx],
|
||||||
|
chunk_outputs_dim[region_idx],
|
||||||
|
chunk_infos[region_idx]["chunk_size"],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
if within_chunk_region:
|
||||||
|
emit_node_func(node, body)
|
||||||
|
# replace input var with chunk var
|
||||||
|
for input_node_idx, input_node in enumerate(chunk_inputs[region_idx]):
|
||||||
|
for idx, dim in chunk_inputs_dim[region_idx][input_node_idx].items():
|
||||||
|
if idx == node_idx:
|
||||||
|
chunk_slice = _gen_chunk_slice_dim(
|
||||||
|
dim[0], "chunk_idx", get_node_shape(input_node)
|
||||||
|
)
|
||||||
|
body[-1] = _replace_name(
|
||||||
|
body[-1], input_node.name, input_node.name + chunk_slice
|
||||||
|
)
|
||||||
|
# ones like
|
||||||
|
if "ones_like" in node.name:
|
||||||
|
meta_node = chunk_region_search.index_tracer.node_list[node_idx]
|
||||||
|
chunk_dim = chunk_infos[region_idx]["node_chunk_dim"][meta_node][
|
||||||
|
"chunk_dim"
|
||||||
|
]
|
||||||
|
if get_node_shape(meta_node)[chunk_dim] != 1:
|
||||||
|
source_node = meta_node.args[0].args[0]
|
||||||
|
if (
|
||||||
|
source_node not in chunk_infos[region_idx]["node_chunk_dim"]
|
||||||
|
or chunk_infos[region_idx]["node_chunk_dim"][source_node][
|
||||||
|
"chunk_dim"
|
||||||
|
]
|
||||||
|
is None
|
||||||
|
):
|
||||||
|
chunk_slice = _gen_chunk_slice_dim(
|
||||||
|
chunk_dim, "chunk_idx", get_node_shape(node)
|
||||||
|
)
|
||||||
|
body[-1] = _replace_name(
|
||||||
|
body[-1], node.args[0].name, node.args[0].name + chunk_slice
|
||||||
|
)
|
||||||
|
body[-1] = _replace_reshape_size(
|
||||||
|
body[-1], node.name, chunk_infos[region_idx]["reshape_size"]
|
||||||
|
)
|
||||||
|
body[-1] = " " + body[-1]
|
||||||
|
delete_unused_value_func(node, body, chunk_inputs_names)
|
||||||
|
else:
|
||||||
|
emit_node_func(node, body)
|
||||||
|
if node_idx not in chunk_inputs:
|
||||||
|
delete_unused_value_func(node, body, chunk_inputs_names)
|
||||||
|
|
||||||
|
if node_idx in chunk_ends:
|
||||||
|
body.append(
|
||||||
|
_gen_loop_end(
|
||||||
|
chunk_inputs[region_idx],
|
||||||
|
chunk_inputs_non_chunk[region_idx],
|
||||||
|
chunk_outputs[region_idx],
|
||||||
|
chunk_outputs_dim[region_idx],
|
||||||
|
node_list,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
within_chunk_region = False
|
||||||
|
|
||||||
|
node_idx += 1
|
||||||
|
|
||||||
|
|
||||||
|
if CODEGEN_AVAILABLE:
|
||||||
|
|
||||||
|
class AutoChunkCodeGen(CodeGen):
|
||||||
|
def __init__(self, meta_graph, max_memory=None):
|
||||||
|
super().__init__()
|
||||||
|
self.meta_graph = meta_graph
|
||||||
|
self.max_memory = max_memory
|
||||||
|
self.meta_node = list(meta_graph.graph.nodes)
|
||||||
|
# find the chunk regions
|
||||||
|
self.chunk_region_search = ChunkRegionSearch(meta_graph, max_memory)
|
||||||
|
self.chunk_infos = self.chunk_region_search.search_region()
|
||||||
|
|
||||||
|
def _gen_python_code(
|
||||||
|
self, nodes, root_module: str, namespace: _Namespace
|
||||||
|
) -> PythonCode:
|
||||||
|
free_vars: List[str] = []
|
||||||
|
body: List[str] = []
|
||||||
|
globals_: Dict[str, Any] = {}
|
||||||
|
wrapped_fns: Dict[str, None] = {}
|
||||||
|
|
||||||
|
# Wrap string in list to pass by reference
|
||||||
|
maybe_return_annotation: List[str] = [""]
|
||||||
|
|
||||||
|
def add_global(name_hint: str, obj: Any):
|
||||||
|
"""Add an obj to be tracked as a global.
|
||||||
|
|
||||||
|
We call this for names that reference objects external to the
|
||||||
|
Graph, like functions or types.
|
||||||
|
|
||||||
|
Returns: the global name that should be used to reference 'obj' in generated source.
|
||||||
|
"""
|
||||||
|
if (
|
||||||
|
_is_from_torch(obj) and obj != torch.device
|
||||||
|
): # to support registering torch.device
|
||||||
|
# HACK: workaround for how torch custom ops are registered. We
|
||||||
|
# can't import them like normal modules so they must retain their
|
||||||
|
# fully qualified name.
|
||||||
|
return _get_qualified_name(obj)
|
||||||
|
|
||||||
|
# normalize the name hint to get a proper identifier
|
||||||
|
global_name = namespace.create_name(name_hint, obj)
|
||||||
|
|
||||||
|
if global_name in globals_:
|
||||||
|
assert globals_[global_name] is obj
|
||||||
|
return global_name
|
||||||
|
globals_[global_name] = obj
|
||||||
|
return global_name
|
||||||
|
|
||||||
|
# set _custom_builtins here so that we needn't import colossalai in forward
|
||||||
|
_custom_builtins["colossalai"] = _CustomBuiltin(
|
||||||
|
"import colossalai", colossalai
|
||||||
|
)
|
||||||
|
|
||||||
|
# Pre-fill the globals table with registered builtins.
|
||||||
|
for name, (_, obj) in _custom_builtins.items():
|
||||||
|
add_global(name, obj)
|
||||||
|
|
||||||
|
def type_repr(o: Any):
|
||||||
|
if o == ():
|
||||||
|
# Empty tuple is used for empty tuple type annotation Tuple[()]
|
||||||
|
return "()"
|
||||||
|
|
||||||
|
typename = _type_repr(o)
|
||||||
|
|
||||||
|
if hasattr(o, "__origin__"):
|
||||||
|
# This is a generic type, e.g. typing.List[torch.Tensor]
|
||||||
|
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
|
||||||
|
origin_typename = add_global(_type_repr(origin_type), origin_type)
|
||||||
|
|
||||||
|
if hasattr(o, "__args__"):
|
||||||
|
# Assign global names for each of the inner type variables.
|
||||||
|
args = [type_repr(arg) for arg in o.__args__]
|
||||||
|
|
||||||
|
if len(args) == 0:
|
||||||
|
# Bare type, such as `typing.Tuple` with no subscript
|
||||||
|
# This code-path used in Python < 3.9
|
||||||
|
return origin_typename
|
||||||
|
|
||||||
|
return f'{origin_typename}[{",".join(args)}]'
|
||||||
|
else:
|
||||||
|
# Bare type, such as `typing.Tuple` with no subscript
|
||||||
|
# This code-path used in Python 3.9+
|
||||||
|
return origin_typename
|
||||||
|
|
||||||
|
# Common case: this is a regular module name like 'foo.bar.baz'
|
||||||
|
return add_global(typename, o)
|
||||||
|
|
||||||
|
def _format_args(
|
||||||
|
args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
|
||||||
|
) -> str:
|
||||||
|
def _get_repr(arg):
|
||||||
|
# Handle NamedTuples (if it has `_fields`) via add_global.
|
||||||
|
if isinstance(arg, tuple) and hasattr(arg, "_fields"):
|
||||||
|
qualified_name = _get_qualified_name(type(arg))
|
||||||
|
global_name = add_global(qualified_name, type(arg))
|
||||||
|
return f"{global_name}{repr(tuple(arg))}"
|
||||||
|
return repr(arg)
|
||||||
|
|
||||||
|
args_s = ", ".join(_get_repr(a) for a in args)
|
||||||
|
kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items())
|
||||||
|
if args_s and kwargs_s:
|
||||||
|
return f"{args_s}, {kwargs_s}"
|
||||||
|
return args_s or kwargs_s
|
||||||
|
|
||||||
|
# Run through reverse nodes and record the first instance of a use
|
||||||
|
# of a given node. This represents the *last* use of the node in the
|
||||||
|
# execution order of the program, which we will use to free unused
|
||||||
|
# values
|
||||||
|
node_to_last_use: Dict[Node, Node] = {}
|
||||||
|
user_to_last_uses: Dict[Node, List[Node]] = {}
|
||||||
|
|
||||||
|
def register_last_uses(n: Node, user: Node):
|
||||||
|
if n not in node_to_last_use:
|
||||||
|
node_to_last_use[n] = user
|
||||||
|
user_to_last_uses.setdefault(user, []).append(n)
|
||||||
|
|
||||||
|
for node in reversed(nodes):
|
||||||
|
map_arg(node.args, lambda n: register_last_uses(n, node))
|
||||||
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
||||||
|
|
||||||
|
delete_free_var_from_last_use(user_to_last_uses)
|
||||||
|
|
||||||
|
# NOTE: we add a variable to distinguish body and ckpt_func
|
||||||
|
def delete_unused_values(user: Node, body, to_keep=[]):
|
||||||
|
"""
|
||||||
|
Delete values after their last use. This ensures that values that are
|
||||||
|
not used in the remainder of the code are freed and the memory usage
|
||||||
|
of the code is optimal.
|
||||||
|
"""
|
||||||
|
if user.op == "placeholder":
|
||||||
|
return
|
||||||
|
if user.op == "output":
|
||||||
|
body.append("\n")
|
||||||
|
return
|
||||||
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
||||||
|
nodes_to_delete = [i for i in nodes_to_delete if i.name not in to_keep]
|
||||||
|
if len(nodes_to_delete):
|
||||||
|
to_delete_str = " = ".join(
|
||||||
|
[repr(n) for n in nodes_to_delete] + ["None"]
|
||||||
|
)
|
||||||
|
body.append(f"; {to_delete_str}\n")
|
||||||
|
else:
|
||||||
|
body.append("\n")
|
||||||
|
|
||||||
|
# NOTE: we add a variable to distinguish body and ckpt_func
|
||||||
|
def emit_node(node: Node, body):
|
||||||
|
maybe_type_annotation = (
|
||||||
|
"" if node.type is None else f" : {type_repr(node.type)}"
|
||||||
|
)
|
||||||
|
if node.op == "placeholder":
|
||||||
|
assert isinstance(node.target, str)
|
||||||
|
maybe_default_arg = (
|
||||||
|
"" if not node.args else f" = {repr(node.args[0])}"
|
||||||
|
)
|
||||||
|
free_vars.append(
|
||||||
|
f"{node.target}{maybe_type_annotation}{maybe_default_arg}"
|
||||||
|
)
|
||||||
|
raw_name = node.target.replace("*", "")
|
||||||
|
if raw_name != repr(node):
|
||||||
|
body.append(f"{repr(node)} = {raw_name}\n")
|
||||||
|
return
|
||||||
|
elif node.op == "call_method":
|
||||||
|
assert isinstance(node.target, str)
|
||||||
|
body.append(
|
||||||
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}"
|
||||||
|
f"({_format_args(node.args[1:], node.kwargs)})"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
elif node.op == "call_function":
|
||||||
|
assert callable(node.target)
|
||||||
|
# pretty print operators
|
||||||
|
if (
|
||||||
|
node.target.__module__ == "_operator"
|
||||||
|
and node.target.__name__ in magic_methods
|
||||||
|
):
|
||||||
|
assert isinstance(node.args, tuple)
|
||||||
|
body.append(
|
||||||
|
f"{repr(node)}{maybe_type_annotation} = "
|
||||||
|
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
# pretty print inplace operators; required for jit.script to work properly
|
||||||
|
# not currently supported in normal FX graphs, but generated by torchdynamo
|
||||||
|
if (
|
||||||
|
node.target.__module__ == "_operator"
|
||||||
|
and node.target.__name__ in inplace_methods
|
||||||
|
):
|
||||||
|
body.append(
|
||||||
|
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; "
|
||||||
|
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
qualified_name = _get_qualified_name(node.target)
|
||||||
|
global_name = add_global(qualified_name, node.target)
|
||||||
|
# special case for getattr: node.args could be 2-argument or 3-argument
|
||||||
|
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
|
||||||
|
if (
|
||||||
|
global_name == "getattr"
|
||||||
|
and isinstance(node.args, tuple)
|
||||||
|
and isinstance(node.args[1], str)
|
||||||
|
and node.args[1].isidentifier()
|
||||||
|
and len(node.args) == 2
|
||||||
|
):
|
||||||
|
body.append(
|
||||||
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
body.append(
|
||||||
|
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})"
|
||||||
|
)
|
||||||
|
if node.meta.get("is_wrapped", False):
|
||||||
|
wrapped_fns.setdefault(global_name)
|
||||||
|
return
|
||||||
|
elif node.op == "call_module":
|
||||||
|
assert isinstance(node.target, str)
|
||||||
|
body.append(
|
||||||
|
f"{repr(node)}{maybe_type_annotation} = "
|
||||||
|
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
elif node.op == "get_attr":
|
||||||
|
assert isinstance(node.target, str)
|
||||||
|
body.append(
|
||||||
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
elif node.op == "output":
|
||||||
|
if node.type is not None:
|
||||||
|
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
|
||||||
|
body.append(self.generate_output(node.args[0]))
|
||||||
|
return
|
||||||
|
raise NotImplementedError(f"node: {node.op} {node.target}")
|
||||||
|
|
||||||
|
# Modified for activation checkpointing
|
||||||
|
ckpt_func = []
|
||||||
|
|
||||||
|
# if any node has a list of labels for activation_checkpoint, we
|
||||||
|
# will use nested type of activation checkpoint codegen
|
||||||
|
emit_code_with_chunk(
|
||||||
|
body,
|
||||||
|
nodes,
|
||||||
|
emit_node,
|
||||||
|
delete_unused_values,
|
||||||
|
self.chunk_region_search,
|
||||||
|
self.chunk_infos,
|
||||||
|
)
|
||||||
|
|
||||||
|
if len(body) == 0:
|
||||||
|
# If the Graph has no non-placeholder nodes, no lines for the body
|
||||||
|
# have been emitted. To continue to have valid Python code, emit a
|
||||||
|
# single pass statement
|
||||||
|
body.append("pass\n")
|
||||||
|
|
||||||
|
if len(wrapped_fns) > 0:
|
||||||
|
wrap_name = add_global("wrap", torch.fx.wrap)
|
||||||
|
wrap_stmts = "\n".join(
|
||||||
|
[f'{wrap_name}("{name}")' for name in wrapped_fns]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
wrap_stmts = ""
|
||||||
|
|
||||||
|
if self._body_transformer:
|
||||||
|
body = self._body_transformer(body)
|
||||||
|
|
||||||
|
for name, value in self.additional_globals():
|
||||||
|
add_global(name, value)
|
||||||
|
|
||||||
|
# as we need colossalai.utils.checkpoint, we need to import colossalai
|
||||||
|
# in forward function
|
||||||
|
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
|
||||||
|
prologue = "".join(ckpt_func) + prologue
|
||||||
|
prologue = prologue
|
||||||
|
|
||||||
|
code = "".join(body)
|
||||||
|
code = "\n".join(" " + line for line in code.split("\n"))
|
||||||
|
fn_code = f"""
|
||||||
|
{wrap_stmts}
|
||||||
|
|
||||||
|
{prologue}
|
||||||
|
{code}"""
|
||||||
|
# print(fn_code)
|
||||||
|
return PythonCode(fn_code, globals_)
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,211 @@
|
||||||
|
from .index_tracer import IndexTracer
|
||||||
|
from .memory_estiamtor import MemoryEstimator
|
||||||
|
from .chunk_selector import ChunkSelector
|
||||||
|
import copy
|
||||||
|
from .utils import is_non_compute_node, is_non_compute_node_except_placeholder, get_node_shape
|
||||||
|
|
||||||
|
|
||||||
|
class ChunkRegionSearch(object):
|
||||||
|
def __init__(self, gm, max_memory=None) -> None:
|
||||||
|
self.gm = gm
|
||||||
|
self.index_tracer = IndexTracer(list(gm.graph.nodes))
|
||||||
|
self.index_tracer.trace_index()
|
||||||
|
self.memory_estimator = MemoryEstimator(self.index_tracer)
|
||||||
|
self.chunk_selector = ChunkSelector(
|
||||||
|
self.index_tracer, self.memory_estimator, max_memory=max_memory
|
||||||
|
)
|
||||||
|
|
||||||
|
def _find_peak_node(self, mem_peak):
|
||||||
|
max_value = max(mem_peak)
|
||||||
|
max_idx = mem_peak.index(max_value)
|
||||||
|
return max_idx
|
||||||
|
|
||||||
|
def _get_free_var(self):
|
||||||
|
free_var_idx = []
|
||||||
|
for idx, n in enumerate(self.index_tracer.node_list):
|
||||||
|
if n.op == "placeholder":
|
||||||
|
free_var_idx.append(idx)
|
||||||
|
return free_var_idx
|
||||||
|
|
||||||
|
def _get_min_free_var(self, active_node_list, free_vars):
|
||||||
|
min_len = 999
|
||||||
|
for idx, n in enumerate(active_node_list):
|
||||||
|
if idx in free_vars:
|
||||||
|
continue
|
||||||
|
if len(n) < min_len:
|
||||||
|
min_len = len(n)
|
||||||
|
return min_len
|
||||||
|
|
||||||
|
def _search_max_chunk_region(self, active_node, peak_node, chunk_regions):
|
||||||
|
free_vars = self._get_free_var()
|
||||||
|
free_var_num = len(free_vars)
|
||||||
|
active_node_num = [len(i) for i in active_node]
|
||||||
|
min_active_node_num = min(active_node_num[free_var_num:])
|
||||||
|
threshold = max(free_var_num, min_active_node_num)
|
||||||
|
|
||||||
|
# from peak_node to free_var
|
||||||
|
inside_flag = False
|
||||||
|
chunk_region_start = free_var_num
|
||||||
|
for i in range(peak_node, -1, -1):
|
||||||
|
if active_node_num[i] <= threshold:
|
||||||
|
inside_flag = True
|
||||||
|
if inside_flag and active_node_num[i] > threshold:
|
||||||
|
chunk_region_start = i + 1
|
||||||
|
break
|
||||||
|
|
||||||
|
# from peak_node to len-2
|
||||||
|
inside_flag = False
|
||||||
|
chunk_region_end = len(active_node) - 1
|
||||||
|
for i in range(peak_node, len(active_node)):
|
||||||
|
if active_node_num[i] <= threshold:
|
||||||
|
inside_flag = True
|
||||||
|
if inside_flag and active_node_num[i] > threshold:
|
||||||
|
chunk_region_end = i
|
||||||
|
break
|
||||||
|
|
||||||
|
for i in chunk_regions:
|
||||||
|
region = i["region"]
|
||||||
|
if chunk_region_start >= region[0] and chunk_region_end <= region[1]:
|
||||||
|
return None
|
||||||
|
elif (
|
||||||
|
region[0] <= chunk_region_start <= region[1]
|
||||||
|
and chunk_region_end > region[1]
|
||||||
|
):
|
||||||
|
chunk_region_start = region[1] + 1
|
||||||
|
elif (
|
||||||
|
region[0] <= chunk_region_end <= region[1]
|
||||||
|
and chunk_region_start < region[0]
|
||||||
|
):
|
||||||
|
chunk_region_end = region[0] - 1
|
||||||
|
return chunk_region_start, chunk_region_end
|
||||||
|
|
||||||
|
def _is_not_compute(self, trace, chunk_range, dim_idx):
|
||||||
|
if trace["idx"][dim_idx] not in trace["compute"]:
|
||||||
|
return True
|
||||||
|
if trace["idx"][dim_idx] in trace["compute"] and all(
|
||||||
|
i < chunk_range[0] or i > chunk_range[1]
|
||||||
|
for i in trace["compute"][trace["idx"][dim_idx]]
|
||||||
|
):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _find_free_dim(self, input_trace, output_trace, start_idx, end_idx):
|
||||||
|
start_traces = input_trace[start_idx]
|
||||||
|
end_trace = output_trace[end_idx]
|
||||||
|
end_node = self.index_tracer.node_list[end_idx]
|
||||||
|
chunk_infos = []
|
||||||
|
for end_dim, _ in enumerate(end_trace["idx"]):
|
||||||
|
if len(start_traces) > 1:
|
||||||
|
continue
|
||||||
|
for start_node, start_trace in start_traces.items():
|
||||||
|
for start_dim, _ in enumerate(start_trace["idx"]):
|
||||||
|
# dim size cannot be 1
|
||||||
|
if (
|
||||||
|
get_node_shape(end_node)[end_dim] == 1
|
||||||
|
or get_node_shape(start_node)[start_dim] == 1
|
||||||
|
):
|
||||||
|
continue
|
||||||
|
# check index source align
|
||||||
|
if not self.index_tracer.check_index_source(
|
||||||
|
start_dim, start_node, start_idx, end_dim, end_node
|
||||||
|
):
|
||||||
|
continue
|
||||||
|
# check index copmute
|
||||||
|
if not self.index_tracer.check_index_compute(
|
||||||
|
start_idx, end_dim, end_node, end_idx
|
||||||
|
):
|
||||||
|
continue
|
||||||
|
# flow search
|
||||||
|
chunk_info = self.index_tracer.flow_search(
|
||||||
|
start_idx, start_dim, end_idx, end_dim
|
||||||
|
)
|
||||||
|
if chunk_info is None:
|
||||||
|
continue
|
||||||
|
# check index copmute
|
||||||
|
if not self.index_tracer.check_index_duplicate(chunk_info):
|
||||||
|
continue
|
||||||
|
chunk_infos.append(chunk_info)
|
||||||
|
return chunk_infos
|
||||||
|
|
||||||
|
def _search_possible_chunk_regions(self, max_chunk_region, peak_node):
|
||||||
|
possible_chunk_region = []
|
||||||
|
output_trace = copy.deepcopy(self.index_tracer.idx_trace_list)
|
||||||
|
input_trace = [] # trace of a node's input nodes
|
||||||
|
for _, n in enumerate(self.index_tracer.node_list):
|
||||||
|
cur_trace = {}
|
||||||
|
for arg in n.args:
|
||||||
|
if type(arg) == type(n) and not is_non_compute_node_except_placeholder(
|
||||||
|
arg
|
||||||
|
):
|
||||||
|
cur_trace[arg] = self.index_tracer._find_trace_from_node(arg)
|
||||||
|
input_trace.append(cur_trace)
|
||||||
|
|
||||||
|
for start_idx in range(max_chunk_region[0], peak_node + 1):
|
||||||
|
for end_idx in range(peak_node, max_chunk_region[1] + 1):
|
||||||
|
# skip non compute nodes
|
||||||
|
if is_non_compute_node(
|
||||||
|
self.index_tracer.node_list[start_idx]
|
||||||
|
) or is_non_compute_node(self.index_tracer.node_list[end_idx]):
|
||||||
|
continue
|
||||||
|
|
||||||
|
# select free dim
|
||||||
|
chunk_info = self._find_free_dim(
|
||||||
|
input_trace, output_trace, start_idx, end_idx
|
||||||
|
)
|
||||||
|
if len(chunk_info) > 0:
|
||||||
|
possible_chunk_region.extend(chunk_info)
|
||||||
|
return possible_chunk_region
|
||||||
|
|
||||||
|
def _step_search(self, mem_peak, active_node, chunk_regions):
|
||||||
|
peak_node = self._find_peak_node(mem_peak)
|
||||||
|
max_chunk_region = self._search_max_chunk_region(
|
||||||
|
active_node, peak_node, chunk_regions
|
||||||
|
)
|
||||||
|
if max_chunk_region == None:
|
||||||
|
return None
|
||||||
|
possible_chunk_regions = self._search_possible_chunk_regions(
|
||||||
|
max_chunk_region, peak_node
|
||||||
|
)
|
||||||
|
best_chunk_region = self.chunk_selector._select_best_chunk_region(
|
||||||
|
possible_chunk_regions, chunk_regions, peak_node, max_chunk_region, mem_peak
|
||||||
|
)
|
||||||
|
best_chunk_region = self.index_tracer.reorder_all(best_chunk_region)
|
||||||
|
return best_chunk_region
|
||||||
|
|
||||||
|
def _stop_search(self, init_mem_peak, mem_peak):
|
||||||
|
sorted_init_mem_peak = sorted(init_mem_peak)
|
||||||
|
if max(mem_peak) < sorted_init_mem_peak[int(len(sorted_init_mem_peak) * 0.5)]:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def search_region(self):
|
||||||
|
chunk_infos = []
|
||||||
|
(
|
||||||
|
init_mem_peak,
|
||||||
|
_,
|
||||||
|
active_node,
|
||||||
|
) = self.memory_estimator.estimate_chunk_inference_mem(
|
||||||
|
self.index_tracer.node_list
|
||||||
|
)
|
||||||
|
mem_peak = init_mem_peak
|
||||||
|
|
||||||
|
while True:
|
||||||
|
chunk_info = self._step_search(mem_peak, active_node, chunk_infos)
|
||||||
|
if chunk_info is None:
|
||||||
|
break
|
||||||
|
chunk_infos.append(chunk_info)
|
||||||
|
|
||||||
|
(
|
||||||
|
mem_peak,
|
||||||
|
_,
|
||||||
|
active_node,
|
||||||
|
) = self.memory_estimator.estimate_chunk_inference_mem(
|
||||||
|
self.index_tracer.node_list, chunk_infos
|
||||||
|
)
|
||||||
|
if self._stop_search(init_mem_peak, mem_peak):
|
||||||
|
break
|
||||||
|
self.memory_estimator.estimate_chunk_inference_mem(
|
||||||
|
self.index_tracer.node_list, chunk_infos, print_mem=True
|
||||||
|
)
|
||||||
|
return chunk_infos
|
||||||
|
|
|
@ -0,0 +1,221 @@
|
||||||
|
from .index_tracer import IndexTracer
|
||||||
|
from .memory_estiamtor import MemoryEstimator
|
||||||
|
from .utils import is_non_compute_node
|
||||||
|
|
||||||
|
|
||||||
|
class ChunkSelector(object):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
index_tracer: IndexTracer,
|
||||||
|
memory_estimator: MemoryEstimator,
|
||||||
|
max_memory=None,
|
||||||
|
):
|
||||||
|
self.index_tracer = index_tracer
|
||||||
|
self.memory_estimator = memory_estimator
|
||||||
|
if max_memory is not None:
|
||||||
|
self.stratge = "fit_memory"
|
||||||
|
self.max_memory = max_memory # MB
|
||||||
|
else:
|
||||||
|
self.stratge = "min_memory"
|
||||||
|
|
||||||
|
def _select_best_chunk_region(
|
||||||
|
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
||||||
|
):
|
||||||
|
if self.stratge == "min_memory":
|
||||||
|
best_region = self._select_min_memory_chunk_region(
|
||||||
|
possible_chunk_regions,
|
||||||
|
chunk_infos,
|
||||||
|
peak_node,
|
||||||
|
max_chunk_region,
|
||||||
|
mem_peak,
|
||||||
|
)
|
||||||
|
elif self.stratge == "fit_memory":
|
||||||
|
best_region = self._select_fit_memory_chunk_region(
|
||||||
|
possible_chunk_regions,
|
||||||
|
chunk_infos,
|
||||||
|
peak_node,
|
||||||
|
max_chunk_region,
|
||||||
|
mem_peak,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise RuntimeError()
|
||||||
|
return best_region
|
||||||
|
|
||||||
|
def _select_fit_memory_chunk_region(
|
||||||
|
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
||||||
|
):
|
||||||
|
# stop chunk if max memory satisfy memory limit
|
||||||
|
if max(mem_peak) < self.max_memory:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# remove illegal regions
|
||||||
|
illegal_regions = []
|
||||||
|
for i in possible_chunk_regions:
|
||||||
|
if not self._is_legal_region(i, chunk_infos):
|
||||||
|
illegal_regions.append(i)
|
||||||
|
for i in illegal_regions:
|
||||||
|
if i in possible_chunk_regions:
|
||||||
|
possible_chunk_regions.remove(i)
|
||||||
|
|
||||||
|
if len(possible_chunk_regions) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# get mem for chunk region
|
||||||
|
regions_dict = []
|
||||||
|
for region in possible_chunk_regions:
|
||||||
|
cur_region = region.copy()
|
||||||
|
cur_node_list, cur_region = self.index_tracer.tmp_reorder(
|
||||||
|
self.index_tracer.node_list, cur_region
|
||||||
|
)
|
||||||
|
cur_chunk_infos = chunk_infos + [cur_region]
|
||||||
|
cur_mem_peak = self.memory_estimator.estimate_chunk_inference_mem(
|
||||||
|
cur_node_list, cur_chunk_infos
|
||||||
|
)[0]
|
||||||
|
cur_chunk_region_peak = cur_mem_peak[
|
||||||
|
max_chunk_region[0] : max_chunk_region[1] + 1
|
||||||
|
]
|
||||||
|
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
|
||||||
|
if cur_chunk_region_max_peak < self.max_memory:
|
||||||
|
regions_dict.append(
|
||||||
|
{
|
||||||
|
"chunk_info": region,
|
||||||
|
"chunk_max_mem": cur_chunk_region_max_peak,
|
||||||
|
"chunk_len": self._get_compute_node_num(
|
||||||
|
region["region"][0], region["region"][1]
|
||||||
|
),
|
||||||
|
"reorder_chunk_info": cur_region,
|
||||||
|
"reorder_node_list": cur_node_list,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
# no region found
|
||||||
|
if len(regions_dict) == 0:
|
||||||
|
raise RuntimeError("Search failed. Try a larger memory threshold.")
|
||||||
|
|
||||||
|
# select the min chunk len
|
||||||
|
chunk_len = [i["chunk_len"] for i in regions_dict]
|
||||||
|
best_region_idx = chunk_len.index(min(chunk_len))
|
||||||
|
best_region = regions_dict[best_region_idx]
|
||||||
|
|
||||||
|
# get max chunk size
|
||||||
|
best_region = self._get_fit_chunk_size(best_region, chunk_infos)
|
||||||
|
return best_region
|
||||||
|
|
||||||
|
def _get_fit_chunk_size(self, chunk_region_dict, chunk_infos):
|
||||||
|
chunk_size = 1
|
||||||
|
reorder_chunk_info = chunk_region_dict["reorder_chunk_info"]
|
||||||
|
reorder_chunk_info["chunk_size"] = chunk_size
|
||||||
|
cur_chunk_max_mem = 0
|
||||||
|
# search a region
|
||||||
|
while cur_chunk_max_mem < self.max_memory:
|
||||||
|
chunk_size *= 2
|
||||||
|
reorder_chunk_info["chunk_size"] = chunk_size
|
||||||
|
cur_chunk_infos = chunk_infos + [reorder_chunk_info]
|
||||||
|
cur_mem_peak = self.memory_estimator.estimate_chunk_inference_mem(
|
||||||
|
chunk_region_dict["reorder_node_list"], cur_chunk_infos
|
||||||
|
)[0]
|
||||||
|
cur_chunk_max_mem = max(
|
||||||
|
cur_mem_peak[
|
||||||
|
reorder_chunk_info["region"][0] : reorder_chunk_info["region"][1]
|
||||||
|
+ 1
|
||||||
|
]
|
||||||
|
)
|
||||||
|
# search exact size
|
||||||
|
chunk_info = chunk_region_dict["chunk_info"]
|
||||||
|
chunk_info["chunk_size"] = self._chunk_size_binary_search(
|
||||||
|
chunk_size // 2, chunk_size, chunk_region_dict, chunk_infos
|
||||||
|
)
|
||||||
|
return chunk_info
|
||||||
|
|
||||||
|
def _chunk_size_binary_search(self, l, r, chunk_region_dict, chunk_infos):
|
||||||
|
if l >= 16:
|
||||||
|
gap = 4
|
||||||
|
else:
|
||||||
|
gap = 1
|
||||||
|
chunk_info = chunk_region_dict["reorder_chunk_info"]
|
||||||
|
while r >= l + gap:
|
||||||
|
mid = int((l + r) / 2 + 0.5)
|
||||||
|
chunk_info["chunk_size"] = mid
|
||||||
|
cur_chunk_infos = chunk_infos + [chunk_info]
|
||||||
|
cur_mem_peak = self.memory_estimator.estimate_chunk_inference_mem(
|
||||||
|
chunk_region_dict["reorder_node_list"], cur_chunk_infos
|
||||||
|
)[0]
|
||||||
|
cur_chunk_max_mem = max(
|
||||||
|
cur_mem_peak[chunk_info["region"][0] : chunk_info["region"][1] + 1]
|
||||||
|
)
|
||||||
|
if cur_chunk_max_mem >= self.max_memory:
|
||||||
|
r = mid - gap
|
||||||
|
else:
|
||||||
|
l = mid + gap
|
||||||
|
return l
|
||||||
|
|
||||||
|
def _get_compute_node_num(self, start, end):
|
||||||
|
count = 0
|
||||||
|
for i in self.index_tracer.node_list[start : end + 1]:
|
||||||
|
if not is_non_compute_node(i):
|
||||||
|
count += 1
|
||||||
|
return count
|
||||||
|
|
||||||
|
def _select_min_memory_chunk_region(
|
||||||
|
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
||||||
|
):
|
||||||
|
# remove illegal regions
|
||||||
|
illegal_regions = []
|
||||||
|
for i in possible_chunk_regions:
|
||||||
|
if not self._is_legal_region(i, chunk_infos):
|
||||||
|
illegal_regions.append(i)
|
||||||
|
for i in illegal_regions:
|
||||||
|
if i in possible_chunk_regions:
|
||||||
|
possible_chunk_regions.remove(i)
|
||||||
|
|
||||||
|
if len(possible_chunk_regions) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# get mem for chunk region
|
||||||
|
regions_dict = []
|
||||||
|
for region in possible_chunk_regions:
|
||||||
|
cur_region = region.copy()
|
||||||
|
cur_node_list, cur_region = self.index_tracer.tmp_reorder(
|
||||||
|
self.index_tracer.node_list, cur_region
|
||||||
|
)
|
||||||
|
cur_chunk_infos = chunk_infos + [cur_region]
|
||||||
|
cur_mem_peak = self.memory_estimator.estimate_chunk_inference_mem(
|
||||||
|
cur_node_list, cur_chunk_infos
|
||||||
|
)[0]
|
||||||
|
cur_chunk_region_peak = cur_mem_peak[
|
||||||
|
max_chunk_region[0] : max_chunk_region[1] + 1
|
||||||
|
]
|
||||||
|
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
|
||||||
|
regions_dict.append(
|
||||||
|
{
|
||||||
|
"chunk_info": region,
|
||||||
|
"chunk_max_mem": cur_chunk_region_max_peak,
|
||||||
|
"chunk_len": self._get_compute_node_num(
|
||||||
|
region["region"][0], region["region"][1]
|
||||||
|
),
|
||||||
|
"reorder_chunk_info": cur_region,
|
||||||
|
"reorder_node_list": cur_node_list,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# select the min mem
|
||||||
|
chunk_max_mem = [i["chunk_max_mem"] for i in regions_dict]
|
||||||
|
best_region_idx = chunk_max_mem.index(min(chunk_max_mem))
|
||||||
|
best_region = regions_dict[best_region_idx]["chunk_info"]
|
||||||
|
if best_region is not None:
|
||||||
|
best_region["chunk_size"] = 1
|
||||||
|
return best_region
|
||||||
|
|
||||||
|
def _is_legal_region(self, cur_chunk_info, chunk_infos):
|
||||||
|
(chunk_region_start, chunk_region_end) = cur_chunk_info["region"]
|
||||||
|
if cur_chunk_info in chunk_infos:
|
||||||
|
return False
|
||||||
|
if chunk_region_end < chunk_region_start:
|
||||||
|
return False
|
||||||
|
for i in chunk_infos:
|
||||||
|
region = i["region"]
|
||||||
|
if not (
|
||||||
|
(chunk_region_start > region[1] and chunk_region_end > region[1])
|
||||||
|
or (chunk_region_start < region[0] and chunk_region_end < region[0])
|
||||||
|
):
|
||||||
|
return False
|
||||||
|
return True
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,318 @@
|
||||||
|
import copy
|
||||||
|
from typing import Any, Callable, Dict, Iterable, List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.fx.node import Node, map_arg
|
||||||
|
|
||||||
|
from colossalai.fx.profiler import activation_size, parameter_size
|
||||||
|
|
||||||
|
from .index_tracer import IndexTracer
|
||||||
|
from .utils import (
|
||||||
|
delete_free_var_from_last_use,
|
||||||
|
find_idx_by_name,
|
||||||
|
get_node_shape,
|
||||||
|
is_non_compute_node_except_placeholder,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryEstimator(object):
|
||||||
|
def __init__(self, index_tracer: IndexTracer) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def _get_meta_node_size(self, x):
|
||||||
|
x = x.meta["tensor_meta"]
|
||||||
|
x = x.numel * torch.tensor([], dtype=x.dtype).element_size()
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _get_output_node(self, n):
|
||||||
|
fwd_out = {
|
||||||
|
x.uuid: x
|
||||||
|
for x in n.meta["fwd_out"]
|
||||||
|
if isinstance(x, torch.Tensor) and hasattr(x, "uuid")
|
||||||
|
}
|
||||||
|
out_size = activation_size(fwd_out)
|
||||||
|
out_node = [n.name] if out_size > 0 else []
|
||||||
|
# if any(i in n.name for i in ['transpose', 'permute', 'view']):
|
||||||
|
# out_size = 0
|
||||||
|
return out_size, out_node
|
||||||
|
|
||||||
|
def _get_output_node_size(self, n):
|
||||||
|
return self._get_output_node(n)[0]
|
||||||
|
|
||||||
|
def _add_active_node(self, n, active_list):
|
||||||
|
new_active = self._get_output_node(n)[1]
|
||||||
|
if n.op == "placeholder":
|
||||||
|
new_active.append(n.name)
|
||||||
|
for i in new_active:
|
||||||
|
if i not in active_list:
|
||||||
|
active_list.append(i)
|
||||||
|
|
||||||
|
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
|
||||||
|
delete_size = 0
|
||||||
|
delete_node = []
|
||||||
|
if user.op not in ("output",):
|
||||||
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
||||||
|
if to_keep is not None:
|
||||||
|
keep_list = []
|
||||||
|
for n in nodes_to_delete:
|
||||||
|
if n.name in to_keep:
|
||||||
|
keep_list.append(n)
|
||||||
|
for n in keep_list:
|
||||||
|
if n in nodes_to_delete:
|
||||||
|
nodes_to_delete.remove(n)
|
||||||
|
if len(nodes_to_delete):
|
||||||
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
||||||
|
delete_size = sum([i[0] for i in out_node])
|
||||||
|
for i in range(len(out_node)):
|
||||||
|
if out_node[i][0] > 0:
|
||||||
|
delete_node.append(out_node[i][1][0])
|
||||||
|
elif nodes_to_delete[i].op == "placeholder":
|
||||||
|
delete_node.append(nodes_to_delete[i].name)
|
||||||
|
# elif any(j in nodes_to_delete[i].name for j in ['transpose', 'permute', 'view']):
|
||||||
|
# delete_node.append(nodes_to_delete[i].name)
|
||||||
|
return delete_size, delete_node
|
||||||
|
|
||||||
|
def _get_delete_node_size(self, user, user_to_last_uses, to_keep):
|
||||||
|
return self._get_delete_node(user, user_to_last_uses, to_keep)[0]
|
||||||
|
|
||||||
|
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
|
||||||
|
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
|
||||||
|
for i in delete_node:
|
||||||
|
if i in active_list:
|
||||||
|
active_list.remove(i)
|
||||||
|
|
||||||
|
def _get_chunk_inputs_size(
|
||||||
|
self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx
|
||||||
|
):
|
||||||
|
nodes_to_delete = []
|
||||||
|
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
|
||||||
|
chunk_input_users = chunk_input.users.keys()
|
||||||
|
chunk_input_users_idx = [
|
||||||
|
find_idx_by_name(i.name, node_list) for i in chunk_input_users
|
||||||
|
]
|
||||||
|
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
|
||||||
|
if chunk_input not in nodes_to_delete:
|
||||||
|
nodes_to_delete.append(chunk_input)
|
||||||
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
||||||
|
delete_size = sum([i[0] for i in out_node])
|
||||||
|
return delete_size
|
||||||
|
|
||||||
|
def _get_last_usr(self, nodes):
|
||||||
|
node_to_last_use: Dict[Node, Node] = {}
|
||||||
|
user_to_last_uses: Dict[Node, List[Node]] = {}
|
||||||
|
|
||||||
|
def register_last_uses(n: Node, user: Node):
|
||||||
|
if n not in node_to_last_use:
|
||||||
|
node_to_last_use[n] = user
|
||||||
|
user_to_last_uses.setdefault(user, []).append(n)
|
||||||
|
|
||||||
|
for node in reversed(nodes):
|
||||||
|
map_arg(node.args, lambda n: register_last_uses(n, node))
|
||||||
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
||||||
|
return user_to_last_uses
|
||||||
|
|
||||||
|
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
|
||||||
|
mem = 0
|
||||||
|
not_contiguous_ops = ["permute"]
|
||||||
|
inherit_contiguous_ops = ["transpose", "view"]
|
||||||
|
|
||||||
|
if node.op == "call_function" and any(
|
||||||
|
n in node.name for n in ["matmul", "reshape"]
|
||||||
|
):
|
||||||
|
for n in node.args:
|
||||||
|
if n in not_contiguous_list:
|
||||||
|
# matmul won't change origin tensor, but create a tmp copy
|
||||||
|
mem += self._get_output_node_size(n)
|
||||||
|
elif node.op == "call_module":
|
||||||
|
for n in node.args:
|
||||||
|
if n in not_contiguous_list:
|
||||||
|
# module will just make origin tensor to contiguous
|
||||||
|
if delete:
|
||||||
|
not_contiguous_list.remove(n)
|
||||||
|
elif node.op == "call_method" and any(
|
||||||
|
i in node.name for i in not_contiguous_ops
|
||||||
|
):
|
||||||
|
if node not in not_contiguous_list:
|
||||||
|
not_contiguous_list.append(node)
|
||||||
|
return mem
|
||||||
|
|
||||||
|
def _get_chunk_ratio(self, node, chunk_node_dim, chunk_size):
|
||||||
|
if node not in chunk_node_dim:
|
||||||
|
return 1.0
|
||||||
|
node_shape = get_node_shape(node)
|
||||||
|
chunk_dim = chunk_node_dim[node]["chunk_dim"]
|
||||||
|
if chunk_dim is None:
|
||||||
|
return 1.0
|
||||||
|
else:
|
||||||
|
return float(chunk_size) / node_shape[chunk_dim]
|
||||||
|
|
||||||
|
def _get_chunk_delete_node_size(
|
||||||
|
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names
|
||||||
|
):
|
||||||
|
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
|
||||||
|
# return 0
|
||||||
|
if user.op in ("placeholder", "output"):
|
||||||
|
return 0
|
||||||
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
||||||
|
delete_size = 0
|
||||||
|
for n in nodes_to_delete:
|
||||||
|
if n.name in chunk_inputs_names:
|
||||||
|
continue
|
||||||
|
delete_size += self._get_output_node_size(n) * chunk_ratio
|
||||||
|
return delete_size
|
||||||
|
|
||||||
|
def _print_mem_log(self, log, nodes, title=None):
|
||||||
|
if title:
|
||||||
|
print(title)
|
||||||
|
for idx, (l, n) in enumerate(zip(log, nodes)):
|
||||||
|
print("%s:%.2f \t" % (n.name, l), end="")
|
||||||
|
if (idx + 1) % 3 == 0:
|
||||||
|
print("")
|
||||||
|
print("\n")
|
||||||
|
|
||||||
|
def _print_compute_op_mem_log(self, log, nodes, title=None):
|
||||||
|
if title:
|
||||||
|
print(title)
|
||||||
|
for idx, (l, n) in enumerate(zip(log, nodes)):
|
||||||
|
if n.op in ["placeholder", "get_attr", "output"]:
|
||||||
|
continue
|
||||||
|
if any(i in n.name for i in ["getitem", "getattr"]):
|
||||||
|
continue
|
||||||
|
print("%s:%.2f \t" % (n.name, l), end="")
|
||||||
|
if (idx + 1) % 3 == 0:
|
||||||
|
print("")
|
||||||
|
print("\n")
|
||||||
|
|
||||||
|
def estimate_chunk_inference_mem(
|
||||||
|
self,
|
||||||
|
node_list,
|
||||||
|
chunk_infos=None,
|
||||||
|
print_mem=False,
|
||||||
|
):
|
||||||
|
act_memory = 0.0
|
||||||
|
act_memory_peak_log = []
|
||||||
|
act_memory_after_node_log = []
|
||||||
|
active_node_list = []
|
||||||
|
active_node_list_log = []
|
||||||
|
not_contiguous_list = []
|
||||||
|
user_to_last_uses = self._get_last_usr(node_list)
|
||||||
|
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
|
||||||
|
delete_free_var_from_last_use(user_to_last_uses_no_free_var)
|
||||||
|
|
||||||
|
use_chunk = True if chunk_infos is not None else False
|
||||||
|
chunk_within = False
|
||||||
|
chunk_region_idx = None
|
||||||
|
chunk_ratio = 1 # use it to estimate chunk mem
|
||||||
|
chunk_inputs_names = []
|
||||||
|
|
||||||
|
if use_chunk:
|
||||||
|
chunk_regions = [i["region"] for i in chunk_infos]
|
||||||
|
chunk_starts = [i[0] for i in chunk_regions]
|
||||||
|
chunk_ends = [i[1] for i in chunk_regions]
|
||||||
|
chunk_inputs = [i["inputs"] for i in chunk_infos]
|
||||||
|
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
|
||||||
|
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
|
||||||
|
j.name for i in chunk_inputs_non_chunk for j in i
|
||||||
|
]
|
||||||
|
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
|
||||||
|
chunk_node_dim = [i["node_chunk_dim"] for i in chunk_infos]
|
||||||
|
chunk_sizes = [
|
||||||
|
i["chunk_size"] if "chunk_size" in i else 1 for i in chunk_infos
|
||||||
|
]
|
||||||
|
|
||||||
|
for idx, node in enumerate(node_list):
|
||||||
|
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
|
||||||
|
if use_chunk and idx in chunk_starts:
|
||||||
|
chunk_within = True
|
||||||
|
chunk_region_idx = chunk_starts.index(idx)
|
||||||
|
act_memory += self._get_output_node_size(
|
||||||
|
chunk_outputs[chunk_region_idx]
|
||||||
|
) / (1024**2)
|
||||||
|
|
||||||
|
# determine chunk ratio for current node
|
||||||
|
if chunk_within:
|
||||||
|
chunk_ratio = self._get_chunk_ratio(
|
||||||
|
node,
|
||||||
|
chunk_node_dim[chunk_region_idx],
|
||||||
|
chunk_sizes[chunk_region_idx],
|
||||||
|
)
|
||||||
|
|
||||||
|
# if node is placeholder, just add the size of the node
|
||||||
|
if node.op == "placeholder":
|
||||||
|
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
|
||||||
|
act_memory_peak_log.append(act_memory)
|
||||||
|
# skip output
|
||||||
|
elif node.op == "output":
|
||||||
|
continue
|
||||||
|
# no change for non compute node
|
||||||
|
elif is_non_compute_node_except_placeholder(node):
|
||||||
|
act_memory_peak_log.append(act_memory)
|
||||||
|
# node is a compute op
|
||||||
|
# calculate tmp, output node and delete node memory
|
||||||
|
else:
|
||||||
|
# forward memory
|
||||||
|
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
|
||||||
|
act_memory += (
|
||||||
|
self._get_contiguous_memory(node, not_contiguous_list)
|
||||||
|
* chunk_ratio
|
||||||
|
/ (1024**2)
|
||||||
|
)
|
||||||
|
act_memory += (
|
||||||
|
self._get_output_node_size(node) * chunk_ratio / (1024**2)
|
||||||
|
)
|
||||||
|
# record max act memory
|
||||||
|
act_memory_peak_log.append(act_memory)
|
||||||
|
# delete useless memory
|
||||||
|
act_memory -= (
|
||||||
|
self._get_contiguous_memory(node, not_contiguous_list, delete=True)
|
||||||
|
* chunk_ratio
|
||||||
|
/ (1024**2)
|
||||||
|
)
|
||||||
|
# delete unused vars not in chunk_input_list
|
||||||
|
# we can't delete input nodes until chunk ends
|
||||||
|
if chunk_within:
|
||||||
|
act_memory -= self._get_chunk_delete_node_size(
|
||||||
|
node,
|
||||||
|
user_to_last_uses_no_free_var,
|
||||||
|
chunk_ratio,
|
||||||
|
chunk_inputs_names,
|
||||||
|
) / (1024**2)
|
||||||
|
else:
|
||||||
|
act_memory -= self._get_delete_node_size(
|
||||||
|
node, user_to_last_uses_no_free_var, chunk_inputs_names
|
||||||
|
) / (1024**2)
|
||||||
|
|
||||||
|
# log active node, only effective without chunk
|
||||||
|
self._add_active_node(node, active_node_list)
|
||||||
|
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
|
||||||
|
|
||||||
|
# if node in chunk end nodes, restore chunk settings
|
||||||
|
if use_chunk and idx in chunk_ends:
|
||||||
|
act_memory -= (
|
||||||
|
self._get_output_node_size(node) * chunk_ratio / (1024**2)
|
||||||
|
)
|
||||||
|
act_memory -= self._get_chunk_inputs_size(
|
||||||
|
chunk_inputs[chunk_region_idx],
|
||||||
|
chunk_inputs_non_chunk[chunk_region_idx],
|
||||||
|
node_list,
|
||||||
|
chunk_regions[chunk_region_idx][1],
|
||||||
|
) / (1024**2)
|
||||||
|
chunk_within = False
|
||||||
|
chunk_ratio = 1
|
||||||
|
chunk_region_idx = None
|
||||||
|
|
||||||
|
act_memory_after_node_log.append(act_memory)
|
||||||
|
active_node_list_log.append(copy.deepcopy(active_node_list))
|
||||||
|
|
||||||
|
if print_mem:
|
||||||
|
print("with chunk" if use_chunk else "without chunk")
|
||||||
|
# self._print_mem_log(act_memory_peak_log, node_list, "peak")
|
||||||
|
# self._print_mem_log(act_memory_after_node_log, node_list, "after")
|
||||||
|
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak")
|
||||||
|
# self._print_compute_op_mem_log(
|
||||||
|
# act_memory_after_node_log, node_list, "after"
|
||||||
|
# )
|
||||||
|
|
||||||
|
# param_memory = parameter_size(gm)
|
||||||
|
# all_memory = act_memory + param_memory
|
||||||
|
return act_memory_peak_log, act_memory_after_node_log, active_node_list_log
|
|
@ -0,0 +1,95 @@
|
||||||
|
from typing import Any, Callable, Dict, Iterable, List, Tuple
|
||||||
|
|
||||||
|
from torch.fx.node import Node
|
||||||
|
|
||||||
|
|
||||||
|
def is_non_compute_node(node):
|
||||||
|
if any(i in node.op for i in ["placeholder", "get_attr", "output"]) or any(
|
||||||
|
i in node.name for i in ["getitem", "getattr"]
|
||||||
|
):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def get_node_shape(node):
|
||||||
|
if hasattr(node.meta["tensor_meta"], "shape"):
|
||||||
|
return node.meta["tensor_meta"].shape
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def is_non_compute_node_except_placeholder(node):
|
||||||
|
if any(i in node.op for i in ["get_attr", "output"]) or any(
|
||||||
|
i in node.name for i in ["getitem", "getattr"]
|
||||||
|
):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def is_non_compute_node_except_placeholder_output(node):
|
||||||
|
if any(i in node.op for i in ["get_attr"]) or any(
|
||||||
|
i in node.name for i in ["getitem", "getattr"]
|
||||||
|
):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def find_idx_by_name(name, nodes_list):
|
||||||
|
for idx, node in enumerate(nodes_list):
|
||||||
|
if node.name == name:
|
||||||
|
return idx
|
||||||
|
raise RuntimeError("name %s not found in node list" % name)
|
||||||
|
|
||||||
|
|
||||||
|
def delete_free_var_from_last_use(user_to_last_uses):
|
||||||
|
for key, value in user_to_last_uses.items():
|
||||||
|
for n in value:
|
||||||
|
if n.op == "placeholder":
|
||||||
|
user_to_last_uses[key].remove(n)
|
||||||
|
|
||||||
|
|
||||||
|
def find_chunk_all_input_nodes(nodes: List[Node]):
|
||||||
|
"""
|
||||||
|
Find non-compute input and output node names.
|
||||||
|
input nodes are nodes used in the list
|
||||||
|
output nodes are nodes will use nodes in the list
|
||||||
|
"""
|
||||||
|
input_nodes = []
|
||||||
|
for node in nodes:
|
||||||
|
for input_node in node._input_nodes.keys():
|
||||||
|
if input_node not in nodes and input_node not in input_nodes:
|
||||||
|
input_nodes.append(input_node)
|
||||||
|
return input_nodes
|
||||||
|
|
||||||
|
|
||||||
|
def find_chunk_compute_input_and_output_nodes(nodes: List[Node]):
|
||||||
|
"""
|
||||||
|
Find non-compute input and output node names.
|
||||||
|
input nodes are nodes used in the list
|
||||||
|
output nodes are nodes will use nodes in the list
|
||||||
|
"""
|
||||||
|
input_nodes = []
|
||||||
|
output_nodes = []
|
||||||
|
|
||||||
|
# if a node has an input node which is not in the node list
|
||||||
|
# we treat that input node as the input of the checkpoint function
|
||||||
|
for node in nodes:
|
||||||
|
for input_node in node._input_nodes.keys():
|
||||||
|
if (
|
||||||
|
input_node not in nodes
|
||||||
|
and input_node not in input_nodes
|
||||||
|
and not is_non_compute_node_except_placeholder(input_node)
|
||||||
|
):
|
||||||
|
input_nodes.append(input_node)
|
||||||
|
|
||||||
|
# if a node has a user node which is not in the node list
|
||||||
|
# we treat that user node as the node receiving the current node output
|
||||||
|
for node in nodes:
|
||||||
|
for output_node in node.users.keys():
|
||||||
|
if (
|
||||||
|
output_node not in nodes
|
||||||
|
and node not in output_nodes
|
||||||
|
and not is_non_compute_node_except_placeholder_output(output_node)
|
||||||
|
):
|
||||||
|
output_nodes.append(node)
|
||||||
|
|
||||||
|
return input_nodes, output_nodes
|
|
@ -3,7 +3,7 @@ import time
|
||||||
import torch
|
import torch
|
||||||
import torch.fx
|
import torch.fx
|
||||||
|
|
||||||
from colossalai.autochunk.chunk_codegen import ChunkCodeGen
|
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||||
from colossalai.fx import ColoTracer
|
from colossalai.fx import ColoTracer
|
||||||
from colossalai.fx.graph_module import ColoGraphModule
|
from colossalai.fx.graph_module import ColoGraphModule
|
||||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||||
|
@ -49,25 +49,29 @@ def _build_autochunk(model, max_memory, node, pair):
|
||||||
"pair": pair.to(torch.device("meta")),
|
"pair": pair.to(torch.device("meta")),
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
|
||||||
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
|
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
|
||||||
interp = MetaInfoProp(gm_prop)
|
interp = MetaInfoProp(gm_prop)
|
||||||
interp.propagate(
|
interp.propagate(
|
||||||
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
|
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
|
||||||
)
|
)
|
||||||
|
|
||||||
# now run it twice to get meta info in graph module, not necessary
|
# now run it twice to get meta info in graph module, not necessary
|
||||||
gm = torch.fx.GraphModule(model, graph)
|
gm = torch.fx.GraphModule(model, graph)
|
||||||
interp = MetaInfoProp(gm)
|
interp = MetaInfoProp(gm)
|
||||||
interp.propagate(
|
interp.propagate(
|
||||||
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
|
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
|
||||||
)
|
)
|
||||||
|
|
||||||
# set code_gen
|
# set code_gen
|
||||||
codegen = ChunkCodeGen(gm_prop, max_memory)
|
codegen = AutoChunkCodeGen(gm_prop, max_memory)
|
||||||
graph.set_codegen(codegen)
|
graph.set_codegen(codegen)
|
||||||
gm = ColoGraphModule(model, graph)
|
gm = ColoGraphModule(model, graph)
|
||||||
gm.recompile()
|
gm.recompile()
|
||||||
|
|
||||||
# print
|
# print
|
||||||
code = graph.python_code("self").src
|
# code = graph.python_code("self").src
|
||||||
print(code)
|
# print(code)
|
||||||
return gm
|
return gm
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -4,7 +4,7 @@ import torch.fx
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
|
|
||||||
import colossalai
|
import colossalai
|
||||||
from colossalai.autochunk.chunk_codegen import ChunkCodeGen
|
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
from colossalai.fx import ColoTracer
|
from colossalai.fx import ColoTracer
|
||||||
from colossalai.fx.graph_module import ColoGraphModule
|
from colossalai.fx.graph_module import ColoGraphModule
|
||||||
|
@ -82,7 +82,7 @@ def _run_offload_codegen(rank):
|
||||||
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
|
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
|
||||||
)
|
)
|
||||||
|
|
||||||
codegen = ChunkCodeGen(gm_prop)
|
codegen = AutoChunkCodeGen(gm_prop)
|
||||||
graph.set_codegen(codegen)
|
graph.set_codegen(codegen)
|
||||||
gm = ColoGraphModule(model, graph)
|
gm = ColoGraphModule(model, graph)
|
||||||
gm.recompile()
|
gm.recompile()
|
||||||
|
|
Loading…
Reference in New Issue