ColossalAI/colossalai/autochunk/index_tracer.py

1057 lines
40 KiB
Python

import copy
from .utils import (
find_chunk_all_input_nodes,
find_chunk_compute_input_and_output_nodes,
find_idx_by_name,
get_node_shape,
is_non_compute_node,
is_non_compute_node_except_placeholder,
)
class IndexTracer(object):
def __init__(self, node_list) -> None:
self.node_list = node_list
self.idx_trace_list = self._init_idx_trace_list()
self.idx_trace_equal = []
self.idx_view_list = {}
self.idx_count = -1
self.all_reorder_map = {i: i for i in range(len(self.idx_trace_list))}
def _init_idx_trace_list(self):
idx_trace_list = []
for n in self.node_list:
if get_node_shape(n) != None:
cur_trace = {
"idx": [None for _ in range(len(get_node_shape(n)))],
"compute": [[] for _ in range(len(get_node_shape(n)))],
"source": [{} for _ in range(len(get_node_shape(n)))],
}
else:
cur_trace = {"idx": [], "compute": [], "source": []}
idx_trace_list.append(cur_trace)
return idx_trace_list
def _add_index(self):
"""
Update the count and return it. To record the idx number.
Returns:
idx_count: int
"""
self.idx_count += 1
return self.idx_count
def _del_dim(self, idx, dim_idx):
self.idx_trace_list[idx]["idx"].pop(dim_idx)
self.idx_trace_list[idx]["compute"].pop(dim_idx)
self.idx_trace_list[idx]["source"].pop(dim_idx)
def _add_dim(self, node_idx, dim_idx):
self.idx_trace_list[node_idx]["idx"].insert(dim_idx, self._add_index())
self.idx_trace_list[node_idx]["compute"].insert(dim_idx, [])
self.idx_trace_list[node_idx]["source"].insert(dim_idx, {})
def _transform_index(self, node, node_dim):
node_idx = self._find_idx_trace_from_node(node)
dims = list(range(len(node_idx)))
return dims[node_dim]
def _inherit_index(self, node_from, node_from_dim, node_to, node_to_dim):
node_from_dim = self._transform_index(node_from, node_from_dim)
node_to_dim = self._transform_index(node_to, node_to_dim)
node_from_trace = self._find_trace_from_node(node_from)
node_to_trace = self._find_trace_from_node(node_to)
node_to_trace["idx"][node_to_dim] = node_from_trace["idx"][node_from_dim]
node_to_trace["compute"][node_to_dim] = copy.deepcopy(
node_from_trace["compute"][node_from_dim]
)
self._add_source(node_from, node_from_dim, node_to, node_to_dim, init=True)
def _inherit_all_computation(self, node_from, node_to):
node_from_compute = self._find_compute_trace_from_node(node_from)
node_to_compute = self._find_compute_trace_from_node(node_to)
assert len(node_from_compute) == len(node_to_compute)
for i in range(len(node_from_compute)):
self._add_source(node_from, i, node_to, i)
node_to_compute[i] = copy.deepcopy(node_from_compute[i])
def _add_source(self, node_from, node_from_dim, node_to, node_to_dim, init=False):
node_from_dim = self._transform_index(node_from, node_from_dim)
node_from_trace_source = self._find_source_trace_from_node(node_from)
node_to_dim = self._transform_index(node_to, node_to_dim)
node_to_trace_source = self._find_source_trace_from_node(node_to)
node_from_idx = find_idx_by_name(node_from.name, self.node_list)
if init:
node_to_trace_source[node_to_dim] = {}
# add dim to cur new source
if node_from_idx not in node_to_trace_source[node_to_dim]:
node_to_trace_source[node_to_dim][node_from_idx] = [node_from_dim]
else:
if node_from_dim not in node_to_trace_source[node_to_dim][node_from_idx]:
node_to_trace_source[node_to_dim][node_from_idx].append(node_from_dim)
# update inputs source
for node_idx, node_dim in node_from_trace_source[node_from_dim].items():
if node_idx not in node_to_trace_source[node_to_dim]:
node_to_trace_source[node_to_dim][node_idx] = copy.deepcopy(node_dim)
else:
for d in node_dim:
if d not in node_to_trace_source[node_to_dim][node_idx]:
node_to_trace_source[node_to_dim][node_idx].append(d)
def _mark_computation_from_node(self, node_from, node_to, exclude=None):
if exclude == None:
exclude = []
else:
exclude = [self._transform_index(node_to, i) for i in exclude]
node_from_compute = self._find_compute_trace_from_node(node_from)
node_to_compute = self._find_compute_trace_from_node(node_to)
# assert len(node_from_compute) == len(node_to_compute)
for i in range(-1, -min(len(node_from_compute), len(node_to_compute)) - 1, -1):
if self._transform_index(node_to, i) in exclude:
continue
self._add_source(node_from, i, node_to, i)
for j in node_from_compute[i]:
if j not in node_to_compute[i]:
node_to_compute[i].append(j)
def _mark_idx_equal(self, node1, dim1, node2, dim2):
"""
Mark 2 index to be equal.
Args:
idx1 (int): index count.
idx2 (int): index count.
"""
# node1_idx = _find_idx_by_name(node1.name, self.nodes_list)
# node2_idx = _find_idx_by_name(node2.name, self.nodes_list)
# if node1_idx > node2_idx:
# self._add_source(node2, dim2, node1, dim1)
# else:
# self._add_source(node1, dim1, node2, dim2)
def _mark_computation(self, node, idx, dim):
"""
Mark some dims of node as computed.
Args:
node (node)
idx (int): node index
dim (list or int): dims to be marked as computed
"""
if isinstance(dim, int):
dim = [dim]
dims = list(range(len(get_node_shape(node))))
for d in dim:
cur_dim = dims[d]
if idx not in self.idx_trace_list[idx]["compute"][cur_dim]:
self.idx_trace_list[idx]["compute"][cur_dim].append(idx)
def _find_trace_from_node(self, node):
"""
Find node idx and compute trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
compute (list): computed idx of the node.
"""
node_idx = find_idx_by_name(node.name, self.node_list)
node_dict = self.idx_trace_list[node_idx]
return node_dict
def _find_source_trace_from_node(self, node):
"""
Find node source trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
compute (list): computed idx of the node.
"""
node_idx = find_idx_by_name(node.name, self.node_list)
node_dict = self.idx_trace_list[node_idx]
return node_dict["source"]
def _find_idx_trace_from_node(self, node):
"""
Find node idx trace by the node.
Args:
node (node)
Returns:
idx (list): idx of the node
"""
node_idx = find_idx_by_name(node.name, self.node_list)
return self.idx_trace_list[node_idx]["idx"]
def _find_compute_trace_from_node(self, node):
"""
Find node compute trace by the node.
Args:
node (node)
Returns:
compute (list): computed idx of the node.
"""
node_idx = find_idx_by_name(node.name, self.node_list)
return self.idx_trace_list[node_idx]["compute"]
def _assign_index_as_input(self, node, node_idx, input_node=None):
"""
Assign node's trace as its input node.
Args:
node (node)
node_idx (int)
"""
if input_node == None:
input_node = node.args[0]
input_node_idx = find_idx_by_name(input_node.name, self.node_list)
input_node_idx_trace = self.idx_trace_list[input_node_idx]["idx"]
new_idx_trace = copy.deepcopy(input_node_idx_trace)
self.idx_trace_list[node_idx]["idx"] = new_idx_trace
self._inherit_all_computation(input_node, node)
def _assign_all_index(self, node, node_idx):
"""
Add new index for all node's dims.
Args:
node (node)
node_idx (int)
"""
shape = node.meta["tensor_meta"].shape
new_trace = []
for _ in shape:
new_trace.append(self._add_index())
self.idx_trace_list[node_idx]["idx"] = new_trace
def _assign_transpose_index(self, node, node_idx):
"""
Assign index for transpose op.
1. swap input's dim according to transpose args
2. inherit input's computation
Args:
node (node)
node_idx (int)
"""
input_node = node.args[0]
tranpose_dim = node.args[1:]
self._assign_index_as_input(node, node_idx, input_node)
self._inherit_index(input_node, tranpose_dim[1], node, tranpose_dim[0])
self._inherit_index(input_node, tranpose_dim[0], node, tranpose_dim[1])
def _assign_permute_index(self, node, node_idx):
"""
Assign index for permute op.
1. swap input's dim according to permute args
2. inherit input's computation
Args:
node (node)
node_idx (int)
"""
permute_dim = node.args[1:]
input_node = node.args[0]
self._assign_index_as_input(node, node_idx, input_node)
for idx, d in enumerate(permute_dim):
self._inherit_index(input_node, d, node, idx)
def _assign_linear_index(self, node, node_idx):
"""
Assign index for linear op.
1. copy trace from input node and change last index accroding to weight
2. mark equal for input node last index, weight first dim and bias dim.
3. inherit input's computation, mark computation for last dim.
Args:
node (node)
node_idx (int)
"""
if len(node.args) == 2:
input_node, weight = node.args
bias = None
else:
input_node, weight, bias = node.args
self._assign_index_as_input(node, node_idx)
self._inherit_index(weight, 1, node, -1)
self._mark_computation(node, node_idx, [-1])
self._mark_idx_equal(input_node, -1, weight, 0)
if bias:
self._mark_idx_equal(input_node, -1, bias, 0)
def _assign_matmul_index(self, node, node_idx):
"""
Assign index for matmul op.
1. copy trace from matmul_left and change last index accroding to matmul_right. (assert they have same length)
2. mark equal for input matmul_left -1 index and matmul_right -2 dim.
3. inherit matmul_left and matmul_right computation, mark computation for last dim.
Args:
node (node)
node_idx (int)
"""
matmul_left, matmul_right = node.args
assert len(get_node_shape(matmul_left)) == len(get_node_shape(matmul_right))
self._assign_index_as_input(node, node_idx, matmul_left)
self._inherit_index(matmul_right, -1, node, -1)
self._mark_computation_from_node(matmul_right, node, [-1, -2])
self._mark_computation(node, node_idx, [-1])
self._mark_idx_equal(matmul_left, -1, matmul_right, -2)
def _assign_layernorm_index(self, node, idx):
"""
Assign index for layernorm op.
1. assign index as input node
2. inherit computation and mark last 2 dims as computed.
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, idx)
self._mark_computation(node, idx, [-1])
def _assign_elementwise_index(self, node, idx):
"""
Assign index for element-wise op (eg. relu sigmoid add mul).
1. assign index as input node
2. inherit computation from all input nodes.
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, idx)
nodes_in = []
for node_in in node.args:
if type(node_in) == type(node):
nodes_in.append(node_in)
self._mark_computation_from_node(node_in, node)
assert len(nodes_in) <= 2
if len(nodes_in) == 2:
node_in0_shape = get_node_shape(nodes_in[0])
node_in1_shape = get_node_shape(nodes_in[1])
for i in range(-1, -min(len(node_in0_shape), len(node_in1_shape)) - 1, -1):
if node_in0_shape[i] == node_in1_shape[i]:
self._mark_idx_equal(nodes_in[0], i, nodes_in[1], i)
def _assgin_no_change_index(self, node, idx):
self._assign_index_as_input(node, idx)
for node_in in node.args:
if type(node_in) == type(node):
self._mark_computation_from_node(node_in, node)
def _assign_einsum_index(self, node, idx):
"""
Assign index for einsum op.
Args:
node (node)
node_idx (int)
"""
patterns = node.args[0]
input_nodes = node.args[1:]
patterns = patterns.replace(" ", "")
left, right = patterns.split("->")
left = left.split(",")
all_index = []
for i in left:
for c in i:
all_index.append(c)
all_index = set(all_index)
free_index = set([i for i in right])
sum_index = all_index - free_index
for right_idx, right_indice in enumerate(right):
for left_idx, left_str in enumerate(left):
if right_indice in left_str:
source_idx = left_str.index(right_indice)
self._inherit_index(
input_nodes[left_idx], source_idx, node, right_idx
)
# for i in sum_index:
# for left_idx, left_str in enumerate(left):
# if i in left_str:
# self._mark_computation(node, idx, left_str.index(i))
# break
def _assign_softmax_index(self, node, idx):
"""
Assign index for softmax op.
1. assign index as input node
2. inherit computation and mark softmax dim as computed.
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, idx)
self._mark_computation(node, idx, [node.kwargs["dim"]])
def _assign_unsqueeze_index(self, node, node_idx):
"""
Assign index for unsqueeze op.
1. assign new index for unsqueeze dim
Args:
node (node)
node_idx (int)
"""
self._del_dim(node_idx, -1)
self._assign_index_as_input(node, node_idx)
self._add_dim(node_idx, node.args[1])
def _assign_dropout_index(self, node, node_idx):
"""
Assign index for unsqueeze op.
1. assign new index for unsqueeze dim
Args:
node (node)
node_idx (int)
"""
self._assign_index_as_input(node, node_idx)
def _assign_ones_like_index(self, node, node_idx):
"""
Assign index for oneslike op.
1. assign new index for all dim
Args:
node (node)
node_idx (int)
"""
self._assign_all_index(node, node_idx)
def _assign_view_reshape_index(self, node, node_idx):
"""
Assign index for view and reshape op.
1. get origin shape and target shape by meta info.
2. compute the real value of -1 in target shape.
3. determine changed dim, and assgin index for generated dim.
4. log changed dim and generated dim for restore
5. inherit computation.
6. TODO: look into view list to see whether the view is associated with other,
if so assgin equal dim according to previous view.
Args:
node (node)
node_idx (int)
"""
# get data, turn into number
origin_node = node.args[0]
origin_shape = origin_node.meta["tensor_meta"].shape
target_shape = []
for i in range(1, len(node.args)):
if isinstance(node.args[i], int):
target_shape.append(node.args[i])
else:
target_shape.append(node.args[i].meta["fwd_out"][0])
# compute the value of -1
if -1 in target_shape:
origin_product = 1
for i in origin_shape:
origin_product *= i
target_product = -1
for i in target_shape:
target_product *= i
shape_idx = target_shape.index(-1)
target_shape[shape_idx] = origin_product // target_product
# determine changed dim
len_diff = len(origin_shape) - len(target_shape)
if len_diff == 1:
# dim merge
dim_equal = [i == j for i, j in zip(origin_shape[:-1], target_shape)]
dim_to = [dim_equal.index(False)]
dim_from = [dim_equal.index(False), dim_equal.index(False) + 1]
self._add_dim(node_idx, -1)
elif len_diff == -1:
# dim expand
dim_equal = [i == j for i, j in zip(origin_shape, target_shape[:-1])]
dim_from = [dim_equal.index(False)]
dim_to = [dim_equal.index(False), dim_equal.index(False) + 1]
self._del_dim(node_idx, -1)
else:
raise NotImplementedError(
"shape"
+ str(origin_shape)
+ "and"
+ str(target_shape)
+ "view not implemented"
)
# get new index
origin_trace = self._find_idx_trace_from_node(origin_node)
self._assign_index_as_input(node, node_idx, origin_node)
dim_from.reverse()
for i in dim_from:
self._del_dim(node_idx, i)
for i in dim_to:
self._add_dim(node_idx, i)
# inherit computation
compute_log = self._find_compute_trace_from_node(origin_node)
for i in dim_from:
if origin_trace[i] in compute_log:
for j in dim_to:
self._mark_computation(node, node_idx, [j])
break
# log view, not used now
view_dict = {
"idx_from": [origin_trace[i] for i in dim_from],
"dim_from": dim_from,
"idx_to": [self.idx_trace_list[node_idx]["idx"][i] for i in dim_to],
"dim_to": dim_to,
}
self.idx_view_list[node] = view_dict
def _merge_equal_idx(self):
idx_equal = copy.deepcopy(self.idx_trace_equal)
idx_equal.reverse()
for idx in idx_equal:
merge_to = min(idx)
merge_from = max(idx)
for trace in self.idx_trace_list:
if merge_from in trace["idx"]:
trace["idx"] = [
merge_to if i == merge_from else i for i in trace["idx"]
]
def trace_index(self):
for idx, node in enumerate(self.node_list):
if node.op == "placeholder":
self._assign_all_index(node, idx)
elif node.op == "call_method":
if "transpose" in node.name:
self._assign_transpose_index(node, idx)
elif "permute" in node.name:
self._assign_permute_index(node, idx)
elif "view" in node.name or "reshape" in node.name:
self._assign_view_reshape_index(node, idx)
elif "unsqueeze" in node.name:
self._assign_unsqueeze_index(node, idx)
elif any(i in node.name for i in ["to", "contiguous"]):
self._assgin_no_change_index(node, idx)
else:
raise NotImplementedError(node.name, "method not implemented yet!")
elif node.op == "call_function":
if "linear" in node.name:
self._assign_linear_index(node, idx)
elif "matmul" in node.name:
self._assign_matmul_index(node, idx)
elif "softmax" in node.name:
self._assign_softmax_index(node, idx)
elif any(n in node.name for n in ["mul", "add", "sigmoid", "relu"]):
self._assign_elementwise_index(node, idx)
elif "ones_like" in node.name:
self._assign_ones_like_index(node, idx)
elif "dropout" in node.name:
self._assign_dropout_index(node, idx)
elif "einsum" in node.name:
self._assign_einsum_index(node, idx)
elif "getattr" in node.name:
continue # get attr like shape
elif "getitem" in node.name:
continue # get item in list
else:
raise NotImplementedError(
node.name, "function not implemented yet!"
)
elif node.op == "call_module":
if any(n in node.name for n in ["layernorm", "norm"]):
self._assign_layernorm_index(node, idx)
else:
raise NotImplementedError(node.name, "module not implemented yet!")
elif node.op == "get_attr":
self._assign_all_index(node, idx) # get param
elif node.op == "output":
continue
else:
raise NotImplementedError(node.op, "op not implemented yet!")
# self._merge_equal_idx()
def check_index_source(self, start_dim, start_node, start_idx, end_dim, end_node):
"""
Check 2 given index: one index should be source of the other
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
start_node_idx = find_idx_by_name(start_node.name, self.node_list)
end_node_trace = self._find_trace_from_node(end_node)
end_node_trace_source = end_node_trace["source"][end_dim]
sorted_source = sorted(
end_node_trace_source.items(), key=lambda d: d[0], reverse=True
)
for node_idx, node_dim in sorted_source:
if node_idx == start_node_idx and start_dim in node_dim:
return True
# it means we meet a node outside the loop, and the node is not input node
if node_idx < start_idx:
return False
return False
def check_index_compute(self, start_idx, end_dim, end_node, end_idx):
"""
Check 2 given index: check they haven't been computed in the source trace.
Args:
start_idx(int): start node chunk dim
start_node(node): start node
end_idx(int): end node chunk dim
end_node(node): end node
Returns:
bool: True if check pass
"""
end_node_trace = self._find_trace_from_node(end_node)
end_node_compute = end_node_trace["compute"][end_dim]
if any(start_idx <= i <= end_idx for i in end_node_compute):
return False
return True
def get_node_chunk_dim(self, node_from, node_from_dim, node_to):
node_from_source = self._find_source_trace_from_node(node_from)
dim_source = node_from_source[node_from_dim]
node_to_idx = find_idx_by_name(node_to.name, self.node_list)
for k, v in dim_source.items():
if k == node_to_idx:
return v
return None
def _find_inherit_dim(self, input_node, input_dim, node):
input_node_idx = find_idx_by_name(input_node.name, self.node_list)
node_trace_source = self._find_source_trace_from_node(node)
for node_dim in range(len(get_node_shape(node))):
if (
input_node_idx in node_trace_source[node_dim]
and input_dim[0] in node_trace_source[node_dim][input_node_idx]
):
return node_dim
return None
def check_index_duplicate(self, chunk_infos, return_dim=False):
input_dim_after_node = {}
for input_node_idx, input_node in enumerate(chunk_infos["inputs"]):
for k, v in chunk_infos["inputs_dim"][input_node_idx].items():
inherit_dim = self._find_inherit_dim(input_node, v, self.node_list[k])
if inherit_dim:
input_dim_after_node[k] = inherit_dim
for node in self.node_list[
chunk_infos["region"][0] : chunk_infos["region"][1] + 1
]:
if is_non_compute_node_except_placeholder(node):
continue
count = 0
duplicate_dims = []
node_trace_source = self._find_source_trace_from_node(node)
for node_dim in range(len(get_node_shape(node))):
duplicate_dim = []
duplicate_flag = False
dim_source = node_trace_source[node_dim]
for k, v in dim_source.items():
if chunk_infos["region"][0] <= k <= chunk_infos["region"][1]:
if k in input_dim_after_node and input_dim_after_node[k] in v:
duplicate_flag = True
duplicate_dim.append((k, v))
duplicate_dims.append(duplicate_dim)
if duplicate_flag:
count += 1
if count > 1:
if return_dim:
return False, duplicate_dims
else:
return False
if return_dim:
return True, None
else:
return True
def _assgin_single_node_flow(
self,
arg_node,
start_idx,
end_idx,
cur_node_dim,
cur_node_compute,
cur_node_source,
cur_node_fix_dim,
all_node_info,
next_node_list,
):
arg_idx = find_idx_by_name(arg_node.name, self.node_list)
# arg in chunk range or be inputs
if not (start_idx <= arg_idx < end_idx):
return True
# find arg dim
if cur_node_dim is not None:
# dim is computed
if arg_idx in cur_node_compute[cur_node_dim]:
return False
if arg_idx not in cur_node_source[cur_node_dim]:
arg_dim = None
else:
arg_dim = cur_node_source[cur_node_dim][arg_idx][0]
else:
arg_dim = None
# get fix dim
arg_fix_dim = []
if cur_node_dim is not None:
for i in cur_node_fix_dim:
fix_dim_source = cur_node_source[i]
if arg_idx in fix_dim_source:
arg_fix_dim.append(fix_dim_source[arg_idx][0])
# if already in node_info, arg dim must be same
if arg_node in all_node_info:
if all_node_info[arg_node]["chunk_dim"] != arg_dim:
return False
all_node_info[arg_node]["fix_dim"] = list(
set(all_node_info[arg_node]["fix_dim"] + arg_fix_dim)
)
# else add it to list
else:
all_node_info[arg_node] = {"chunk_dim": arg_dim, "fix_dim": arg_fix_dim}
next_node_list.append(arg_node)
return True
def flow_search(self, start_idx, start_dim, end_idx, end_dim):
inputs, outputs = find_chunk_compute_input_and_output_nodes(
self.node_list[start_idx : end_idx + 1]
)
# only single ouput
if len(outputs) > 1:
return None
cur_node_list = [self.node_list[end_idx]] # start from the last node
all_node_info = {cur_node_list[0]: {"chunk_dim": end_dim, "fix_dim": []}}
while len(cur_node_list) > 0:
next_node_list = []
for cur_node in cur_node_list:
# get cur node info
cur_node_chunk_dim = all_node_info[cur_node]["chunk_dim"]
cur_node_fix_dim = all_node_info[cur_node]["fix_dim"]
cur_node_idx = find_idx_by_name(cur_node.name, self.node_list)
if cur_node_chunk_dim:
cur_node_compute = self._find_compute_trace_from_node(cur_node)
cur_node_source = self._find_source_trace_from_node(cur_node)
else:
cur_node_compute = cur_node_source = None
# get all valid args
arg_list = []
for arg in cur_node.args:
if type(arg) != type(cur_node):
continue
if is_non_compute_node(arg):
continue
arg_list.append(arg)
flow_flag = self._assgin_single_node_flow(
arg,
start_idx,
end_idx,
cur_node_chunk_dim,
cur_node_compute,
cur_node_source,
cur_node_fix_dim,
all_node_info,
next_node_list,
)
if flow_flag == False:
return None
if len(arg_list) == 2:
if any(i in cur_node.name for i in ["add", "mul"]):
for arg in arg_list:
if not (
start_idx
<= find_idx_by_name(arg.name, self.node_list)
< end_idx
):
continue
arg_chunk_dim = all_node_info[arg]["chunk_dim"]
arg_fix_dim = all_node_info[arg]["fix_dim"]
arg_shape = get_node_shape(arg)
# add all dim as fix dim except chunk dim
for i, shape in enumerate(arg_shape):
if shape != 1 and i != cur_node_chunk_dim:
if i == arg_chunk_dim:
return None
if i not in arg_fix_dim:
arg_fix_dim.append(i)
elif "einsum" in cur_node.name:
pass
elif "matmul" in cur_node.name:
pass
else:
raise NotImplementedError()
cur_node_list = next_node_list
inputs_dim = []
remove_inputs = []
for input_node in inputs:
input_dict = {}
input_node_idx = find_idx_by_name(input_node.name, self.node_list)
for user in input_node.users.keys():
if is_non_compute_node(user):
continue
user_idx = find_idx_by_name(user.name, self.node_list)
if start_idx <= user_idx <= end_idx:
chunk_dim = all_node_info[user]["chunk_dim"]
if chunk_dim is not None:
user_source = self._find_source_trace_from_node(user)[chunk_dim]
if input_node_idx in user_source:
input_dict[user_idx] = user_source[input_node_idx]
else:
return None
if len(input_dict) == 0:
remove_inputs.append(input_node)
else:
inputs_dim.append(input_dict)
for i in remove_inputs:
if i in inputs:
inputs.remove(i)
chunk_info = {
"region": (start_idx, end_idx),
"inputs": inputs,
"inputs_non_chunk": [],
"inputs_dim": inputs_dim,
"outputs": outputs,
"outputs_dim": end_dim,
"node_chunk_dim": all_node_info,
"args": {},
}
# move useless nodes ahead of loop
# get all possible prepose nodes
maybe_prepose_nodes = []
for node, node_info in all_node_info.items():
if node_info["chunk_dim"] is None:
maybe_prepose_nodes.append(node)
maybe_prepose_nodes.sort(
key=lambda x: find_idx_by_name(x.name, self.node_list),
reverse=True,
) # from last node to first node
prepose_nodes = []
# set every node as root, search its args, if all legal, turn root and args as prepose nodes
while len(maybe_prepose_nodes) > 0:
tmp_cur_prepose_nodes = [maybe_prepose_nodes[0]]
tmp_cur_related_prepose_nodes = []
prepose_flag = True
# loop cur node's all arg until out of chunk
while len(tmp_cur_prepose_nodes) > 0:
if prepose_flag == False:
break
tmp_next_prepose_nodes = []
tmp_cur_related_prepose_nodes.extend(tmp_cur_prepose_nodes)
for cur_prepose_node in tmp_cur_prepose_nodes:
if prepose_flag == False:
break
for cur_prepose_node_arg in cur_prepose_node.args:
if type(cur_prepose_node_arg) != type(cur_prepose_node):
continue
# out of loop
if not (
start_idx
<= find_idx_by_name(
cur_prepose_node_arg.name, self.node_list
)
< end_idx
):
continue
# compute op in loop
elif cur_prepose_node_arg in all_node_info:
if all_node_info[cur_prepose_node_arg]["chunk_dim"] is None:
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
else:
prepose_flag = False
break
# non compute op
else:
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
tmp_cur_prepose_nodes = tmp_next_prepose_nodes
if prepose_flag == False:
maybe_prepose_nodes.remove(maybe_prepose_nodes[0])
continue
else:
for n in tmp_cur_related_prepose_nodes:
if n not in prepose_nodes:
prepose_nodes.append(n)
if n in maybe_prepose_nodes:
maybe_prepose_nodes.remove(n)
# sort by index
prepose_nodes.sort(key=lambda x: find_idx_by_name(x.name, self.node_list))
chunk_info["args"]["prepose_nodes"] = prepose_nodes
# we need to log input nodes to avoid deleteing them in the loop
chunk_node_list = self.node_list[start_idx : end_idx + 1]
# also need to get some prepose node's arg out of non_chunk_inputs
for n in prepose_nodes:
chunk_node_list.remove(n)
non_chunk_inputs = find_chunk_all_input_nodes(chunk_node_list)
for i in non_chunk_inputs:
if i not in chunk_info["inputs"]:
chunk_info["inputs_non_chunk"].append(i)
# reassgin reshape size, some size may have changed due to chunk
chunk_info = self._reassgin_reshape_size(chunk_info)
return chunk_info
def _reassgin_reshape_size(self, chunk_info):
chunk_region = chunk_info["region"]
reshape_size = {}
chunk_shape = get_node_shape(chunk_info["outputs"][0])[
chunk_info["outputs_dim"]
]
for node in self.node_list[chunk_region[0] : chunk_region[1] + 1]:
if any(i in node.name for i in ["reshape", "view"]):
reshape_args = node.args[1:]
reshape_log = self.idx_view_list[node]
chunk_dim = chunk_info["node_chunk_dim"][node]["chunk_dim"]
reshape_size[node.name] = {}
for reshape_arg_dim, reshape_arg in enumerate(reshape_args):
if reshape_arg_dim in reshape_log["dim_to"]:
continue
if reshape_arg_dim == chunk_dim:
reshape_size[node.name][reshape_arg.name] = (
"min(chunk_size, %d - chunk_idx)" % chunk_shape
)
chunk_info["reshape_size"] = reshape_size
return chunk_info
def _get_reorder_map(self, chunk_info):
reorder_map = {i: i for i in range(len(self.node_list))}
chunk_region_start = chunk_info["region"][0]
chunk_region_end = chunk_info["region"][1]
chunk_prepose_nodes = chunk_info["args"]["prepose_nodes"]
chunk_prepose_nodes_idx = [
find_idx_by_name(i.name, self.node_list) for i in chunk_prepose_nodes
]
# put prepose nodes ahead
for idx, n in enumerate(chunk_prepose_nodes):
n_idx = chunk_prepose_nodes_idx[idx]
reorder_map[n_idx] = chunk_region_start + idx
# put other nodes after prepose nodes
for n in self.node_list[chunk_region_start : chunk_region_end + 1]:
if n in chunk_prepose_nodes:
continue
n_idx = find_idx_by_name(n.name, self.node_list)
pos = sum([n_idx < i for i in chunk_prepose_nodes_idx])
reorder_map[n_idx] = n_idx + pos
return reorder_map
def _reorder_chunk_info(self, chunk_info, reorder_map):
# update chunk info
chunk_info["region"] = (
chunk_info["region"][0] + len(chunk_info["args"]["prepose_nodes"]),
chunk_info["region"][1],
)
new_inputs_dim = []
for idx, input_dim in enumerate(chunk_info["inputs_dim"]):
new_input_dim = {}
for k, v in input_dim.items():
new_input_dim[reorder_map[k]] = v
new_inputs_dim.append(new_input_dim)
chunk_info["inputs_dim"] = new_inputs_dim
return chunk_info
def _update_all_reorder_map(self, reorder_map):
for origin_idx, map_idx in self.all_reorder_map.items():
self.all_reorder_map[origin_idx] = reorder_map[map_idx]
def _reorder_self_node_list(self, reorder_map):
new_node_list = [None for _ in range(len(self.node_list))]
for old_idx, new_idx in reorder_map.items():
new_node_list[new_idx] = self.node_list[old_idx]
self.node_list = new_node_list
def _reorder_idx_trace(self, reorder_map):
# reorder list
new_idx_trace_list = [None for _ in range(len(self.idx_trace_list))]
for old_idx, new_idx in reorder_map.items():
new_idx_trace_list[new_idx] = self.idx_trace_list[old_idx]
self.idx_trace_list = new_idx_trace_list
# update compute
for idx_trace in self.idx_trace_list:
compute = idx_trace["compute"]
for dim_compute in compute:
for idx, i in enumerate(dim_compute):
dim_compute[idx] = reorder_map[i]
# update source
for idx_trace in self.idx_trace_list:
source = idx_trace["source"]
for dim_idx, dim_source in enumerate(source):
new_dim_source = {}
for k, v in dim_source.items():
new_dim_source[reorder_map[k]] = v
source[dim_idx] = new_dim_source
def reorder_all(self, chunk_info):
if chunk_info is None:
return chunk_info
if len(chunk_info["args"]["prepose_nodes"]) == 0:
return chunk_info
reorder_map = self._get_reorder_map(chunk_info)
self._update_all_reorder_map(reorder_map)
self._reorder_idx_trace(reorder_map)
self._reorder_self_node_list(reorder_map)
chunk_info = self._reorder_chunk_info(chunk_info, reorder_map)
return chunk_info
def reorder_node_list(self, node_list):
new_node_list = [None for _ in range(len(node_list))]
for old_idx, new_idx in self.all_reorder_map.items():
new_node_list[new_idx] = node_list[old_idx]
return new_node_list
def tmp_reorder(self, node_list, chunk_info):
if len(chunk_info["args"]["prepose_nodes"]) == 0:
return node_list, chunk_info
reorder_map = self._get_reorder_map(chunk_info)
# new tmp node list
new_node_list = [None for _ in range(len(node_list))]
for old_idx, new_idx in reorder_map.items():
new_node_list[new_idx] = node_list[old_idx]
chunk_info = self._reorder_chunk_info(chunk_info, reorder_map)
return new_node_list, chunk_info