|
|
|
@ -182,7 +182,7 @@ class Linear2D(ParallelLayer):
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
|
|
# input: [m/q, n/q, k/q] |
|
|
|
|
# output: [m/q, n/q, h/q] |
|
|
|
|
out_shape = x.shape[:-1] + (self.hidden_size_per_partition, ) |
|
|
|
|
out_shape = x.shape[:-1] + (self.hidden_size_per_partition,) |
|
|
|
|
|
|
|
|
|
output = Matmul_AB_2D.apply(x, self.weight, self.summa_dim, out_shape, self.row_rank, self.col_rank, |
|
|
|
|
ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, self.data_parallel_rank, |
|
|
|
@ -1012,7 +1012,7 @@ class Classifier2D(ParallelLayer):
|
|
|
|
|
destination.update(local_state) |
|
|
|
|
|
|
|
|
|
def forward(self, input_: Tensor) -> Tensor: |
|
|
|
|
out_shape = input_.shape[:-1] + (self.num_classes, ) |
|
|
|
|
out_shape = input_.shape[:-1] + (self.num_classes,) |
|
|
|
|
|
|
|
|
|
return classifier_2d(input_, self.weight, self.bias, self.summa_dim, out_shape, self.row_rank, self.col_rank, |
|
|
|
|
ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, self.data_parallel_rank, |
|
|
|
@ -1186,7 +1186,7 @@ class VocabParallelClassifier2D(ParallelLayer):
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
|
|
# input: [m/q, n/q, k/q] |
|
|
|
|
# output: [m/q, n/q, h/q] |
|
|
|
|
out_shape = x.shape[:-1] + (self.output_size_per_partition, ) |
|
|
|
|
out_shape = x.shape[:-1] + (self.output_size_per_partition,) |
|
|
|
|
|
|
|
|
|
output = Matmul_ABT_2D.apply(x, self.weight, self.summa_dim, out_shape, self.row_rank, self.col_rank, |
|
|
|
|
ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL, |
|
|
|
|