mirror of https://github.com/hpcaitech/ColossalAI
[NFC] polish colossalai/kernel/cuda_native/csrc/cpu_adam.cpp code style (#636)
parent
6fcb381801
commit
10591ecdf9
|
@ -20,446 +20,447 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|||
SOFTWARE
|
||||
*/
|
||||
#include "cpu_adam.h"
|
||||
#include <math.h>
|
||||
#include <omp.h>
|
||||
#include <torch/extension.h>
|
||||
#include <iostream>
|
||||
#include <math.h>
|
||||
#include <memory>
|
||||
#include <omp.h>
|
||||
#include <string.h>
|
||||
#include <torch/extension.h>
|
||||
#include <type_traits>
|
||||
#include <unordered_map>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
static std::unordered_map<int, std::shared_ptr<void>> s_optimizers;
|
||||
|
||||
// C++ interface
|
||||
|
||||
void Adam_Optimizer::Step_1(float* _params,
|
||||
float* grads,
|
||||
float* _exp_avg,
|
||||
float* _exp_avg_sq,
|
||||
size_t _param_size,
|
||||
bool param_half_precision,
|
||||
bool grad_half_precision,
|
||||
float loss_scale)
|
||||
{
|
||||
size_t rounded_size = 0;
|
||||
void Adam_Optimizer::Step_1(float *_params, float *grads, float *_exp_avg,
|
||||
float *_exp_avg_sq, size_t _param_size,
|
||||
bool param_half_precision, bool grad_half_precision,
|
||||
float loss_scale) {
|
||||
size_t rounded_size = 0;
|
||||
|
||||
float betta1_minus1 = 1 - _betta1;
|
||||
float betta2_minus1 = 1 - _betta2;
|
||||
float step_size = -1 * _alpha / _bias_correction1;
|
||||
float w_decay = -1 * _alpha * _weight_decay;
|
||||
float betta1_minus1 = 1 - _betta1;
|
||||
float betta2_minus1 = 1 - _betta2;
|
||||
float step_size = -1 * _alpha / _bias_correction1;
|
||||
float w_decay = -1 * _alpha * _weight_decay;
|
||||
|
||||
__half* params_cast_h = NULL;
|
||||
__half* grads_cast_h = NULL;
|
||||
__half *params_cast_h = NULL;
|
||||
__half *grads_cast_h = NULL;
|
||||
|
||||
if (param_half_precision) {
|
||||
params_cast_h = reinterpret_cast<__half*>(_params);
|
||||
}
|
||||
if (grad_half_precision) {
|
||||
grads_cast_h = reinterpret_cast<__half*>(grads);
|
||||
}
|
||||
if (param_half_precision) {
|
||||
params_cast_h = reinterpret_cast<__half *>(_params);
|
||||
}
|
||||
if (grad_half_precision) {
|
||||
grads_cast_h = reinterpret_cast<__half *>(grads);
|
||||
}
|
||||
|
||||
#if defined(__AVX512__) or defined(__AVX256__) or defined(__AVX2__)
|
||||
AVX_Data betta1_4;
|
||||
betta1_4.data = SIMD_SET(_betta1);
|
||||
AVX_Data betta2_4;
|
||||
betta2_4.data = SIMD_SET(_betta2);
|
||||
AVX_Data betta1_4;
|
||||
betta1_4.data = SIMD_SET(_betta1);
|
||||
AVX_Data betta2_4;
|
||||
betta2_4.data = SIMD_SET(_betta2);
|
||||
|
||||
AVX_Data betta1_minus1_4;
|
||||
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
||||
AVX_Data betta2_minus1_4;
|
||||
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
||||
AVX_Data betta1_minus1_4;
|
||||
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
||||
AVX_Data betta2_minus1_4;
|
||||
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
||||
|
||||
AVX_Data bias2_sqrt;
|
||||
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
||||
AVX_Data bias2_sqrt;
|
||||
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
||||
|
||||
AVX_Data eps_4;
|
||||
eps_4.data = SIMD_SET(_eps);
|
||||
AVX_Data eps_4;
|
||||
eps_4.data = SIMD_SET(_eps);
|
||||
|
||||
AVX_Data step_size_4;
|
||||
step_size_4.data = SIMD_SET(step_size);
|
||||
AVX_Data step_size_4;
|
||||
step_size_4.data = SIMD_SET(step_size);
|
||||
|
||||
AVX_Data weight_decay_4;
|
||||
if (_weight_decay > 0)
|
||||
weight_decay_4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
||||
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH);
|
||||
AVX_Data weight_decay_4;
|
||||
if (_weight_decay > 0)
|
||||
weight_decay_4.data =
|
||||
(_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
||||
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH);
|
||||
|
||||
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
||||
size_t offset = copy_size + t;
|
||||
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
if ((t + TILE) > rounded_size)
|
||||
copy_size = rounded_size - t;
|
||||
size_t offset = copy_size + t;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (size_t i = t; i < offset; i += SIMD_WIDTH) {
|
||||
AVX_Data grad_4;
|
||||
if (grad_half_precision) {
|
||||
grad_4.data = SIMD_LOAD_HALF(grads_cast_h + i);
|
||||
} else {
|
||||
grad_4.data = SIMD_LOAD(grads + i);
|
||||
}
|
||||
if (loss_scale > 0) {
|
||||
AVX_Data loss_scale_vec;
|
||||
loss_scale_vec.data = SIMD_SET(loss_scale);
|
||||
grad_4.data = SIMD_DIV(grad_4.data, loss_scale_vec.data);
|
||||
}
|
||||
AVX_Data momentum_4;
|
||||
momentum_4.data = SIMD_LOAD(_exp_avg + i);
|
||||
for (size_t i = t; i < offset; i += SIMD_WIDTH) {
|
||||
AVX_Data grad_4;
|
||||
if (grad_half_precision) {
|
||||
grad_4.data = SIMD_LOAD_HALF(grads_cast_h + i);
|
||||
} else {
|
||||
grad_4.data = SIMD_LOAD(grads + i);
|
||||
}
|
||||
if (loss_scale > 0) {
|
||||
AVX_Data loss_scale_vec;
|
||||
loss_scale_vec.data = SIMD_SET(loss_scale);
|
||||
grad_4.data = SIMD_DIV(grad_4.data, loss_scale_vec.data);
|
||||
}
|
||||
AVX_Data momentum_4;
|
||||
momentum_4.data = SIMD_LOAD(_exp_avg + i);
|
||||
|
||||
AVX_Data variance_4;
|
||||
variance_4.data = SIMD_LOAD(_exp_avg_sq + i);
|
||||
AVX_Data variance_4;
|
||||
variance_4.data = SIMD_LOAD(_exp_avg_sq + i);
|
||||
|
||||
AVX_Data param_4;
|
||||
if (param_half_precision) {
|
||||
param_4.data = SIMD_LOAD_HALF(params_cast_h + i);
|
||||
} else {
|
||||
param_4.data = SIMD_LOAD(_params + i);
|
||||
}
|
||||
AVX_Data param_4;
|
||||
if (param_half_precision) {
|
||||
param_4.data = SIMD_LOAD_HALF(params_cast_h + i);
|
||||
} else {
|
||||
param_4.data = SIMD_LOAD(_params + i);
|
||||
}
|
||||
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad_4.data = SIMD_FMA(param_4.data, weight_decay_4.data, grad_4.data);
|
||||
}
|
||||
momentum_4.data = SIMD_MUL(momentum_4.data, betta1_4.data);
|
||||
momentum_4.data = SIMD_FMA(grad_4.data, betta1_minus1_4.data, momentum_4.data);
|
||||
variance_4.data = SIMD_MUL(variance_4.data, betta2_4.data);
|
||||
grad_4.data = SIMD_MUL(grad_4.data, grad_4.data);
|
||||
variance_4.data = SIMD_FMA(grad_4.data, betta2_minus1_4.data, variance_4.data);
|
||||
grad_4.data = SIMD_SQRT(variance_4.data);
|
||||
grad_4.data = SIMD_FMA(grad_4.data, bias2_sqrt.data, eps_4.data);
|
||||
grad_4.data = SIMD_DIV(momentum_4.data, grad_4.data);
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad_4.data = SIMD_FMA(param_4.data, weight_decay_4.data, grad_4.data);
|
||||
}
|
||||
momentum_4.data = SIMD_MUL(momentum_4.data, betta1_4.data);
|
||||
momentum_4.data =
|
||||
SIMD_FMA(grad_4.data, betta1_minus1_4.data, momentum_4.data);
|
||||
variance_4.data = SIMD_MUL(variance_4.data, betta2_4.data);
|
||||
grad_4.data = SIMD_MUL(grad_4.data, grad_4.data);
|
||||
variance_4.data =
|
||||
SIMD_FMA(grad_4.data, betta2_minus1_4.data, variance_4.data);
|
||||
grad_4.data = SIMD_SQRT(variance_4.data);
|
||||
grad_4.data = SIMD_FMA(grad_4.data, bias2_sqrt.data, eps_4.data);
|
||||
grad_4.data = SIMD_DIV(momentum_4.data, grad_4.data);
|
||||
|
||||
if (_weight_decay > 0 && _adamw_mode) {
|
||||
param_4.data = SIMD_FMA(param_4.data, weight_decay_4.data, param_4.data);
|
||||
}
|
||||
param_4.data = SIMD_FMA(grad_4.data, step_size_4.data, param_4.data);
|
||||
if (_weight_decay > 0 && _adamw_mode) {
|
||||
param_4.data =
|
||||
SIMD_FMA(param_4.data, weight_decay_4.data, param_4.data);
|
||||
}
|
||||
param_4.data = SIMD_FMA(grad_4.data, step_size_4.data, param_4.data);
|
||||
|
||||
if (param_half_precision) {
|
||||
SIMD_STORE_HALF((float*)(params_cast_h + i), param_4.data);
|
||||
} else {
|
||||
SIMD_STORE(_params + i, param_4.data);
|
||||
}
|
||||
SIMD_STORE(_exp_avg + i, momentum_4.data);
|
||||
SIMD_STORE(_exp_avg_sq + i, variance_4.data);
|
||||
}
|
||||
if (param_half_precision) {
|
||||
SIMD_STORE_HALF((float *)(params_cast_h + i), param_4.data);
|
||||
} else {
|
||||
SIMD_STORE(_params + i, param_4.data);
|
||||
}
|
||||
SIMD_STORE(_exp_avg + i, momentum_4.data);
|
||||
SIMD_STORE(_exp_avg_sq + i, variance_4.data);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (_param_size > rounded_size) {
|
||||
for (size_t t = rounded_size; t < _param_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
if ((t + TILE) > _param_size) copy_size = _param_size - t;
|
||||
size_t offset = copy_size + t;
|
||||
if (_param_size > rounded_size) {
|
||||
for (size_t t = rounded_size; t < _param_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
if ((t + TILE) > _param_size)
|
||||
copy_size = _param_size - t;
|
||||
size_t offset = copy_size + t;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (size_t k = t; k < offset; k++) {
|
||||
float grad = grad_half_precision ? (float)grads_cast_h[k] : grads[k];
|
||||
if (loss_scale > 0) { grad /= loss_scale; }
|
||||
float param = param_half_precision ? (float)params_cast_h[k] : _params[k];
|
||||
float momentum = _exp_avg[k];
|
||||
float variance = _exp_avg_sq[k];
|
||||
if (_weight_decay > 0 && !_adamw_mode) { grad = param * _weight_decay + grad; }
|
||||
momentum = momentum * _betta1;
|
||||
momentum = grad * betta1_minus1 + momentum;
|
||||
|
||||
variance = variance * _betta2;
|
||||
grad = grad * grad;
|
||||
variance = grad * betta2_minus1 + variance;
|
||||
|
||||
grad = sqrt(variance);
|
||||
grad = grad * _bias_correction2 + _eps;
|
||||
grad = momentum / grad;
|
||||
if (_weight_decay > 0 && _adamw_mode) { param += w_decay * param; }
|
||||
param = grad * step_size + param;
|
||||
|
||||
if (param_half_precision)
|
||||
params_cast_h[k] = (__half)param;
|
||||
else
|
||||
_params[k] = param;
|
||||
_exp_avg[k] = momentum;
|
||||
_exp_avg_sq[k] = variance;
|
||||
}
|
||||
for (size_t k = t; k < offset; k++) {
|
||||
float grad = grad_half_precision ? (float)grads_cast_h[k] : grads[k];
|
||||
if (loss_scale > 0) {
|
||||
grad /= loss_scale;
|
||||
}
|
||||
float param =
|
||||
param_half_precision ? (float)params_cast_h[k] : _params[k];
|
||||
float momentum = _exp_avg[k];
|
||||
float variance = _exp_avg_sq[k];
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad = param * _weight_decay + grad;
|
||||
}
|
||||
momentum = momentum * _betta1;
|
||||
momentum = grad * betta1_minus1 + momentum;
|
||||
|
||||
variance = variance * _betta2;
|
||||
grad = grad * grad;
|
||||
variance = grad * betta2_minus1 + variance;
|
||||
|
||||
grad = sqrt(variance);
|
||||
grad = grad * _bias_correction2 + _eps;
|
||||
grad = momentum / grad;
|
||||
if (_weight_decay > 0 && _adamw_mode) {
|
||||
param += w_decay * param;
|
||||
}
|
||||
param = grad * step_size + param;
|
||||
|
||||
if (param_half_precision)
|
||||
params_cast_h[k] = (__half)param;
|
||||
else
|
||||
_params[k] = param;
|
||||
_exp_avg[k] = momentum;
|
||||
_exp_avg_sq[k] = variance;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Adam_Optimizer::Step_4(float* _params,
|
||||
float* grads,
|
||||
float* _exp_avg,
|
||||
float* _exp_avg_sq,
|
||||
size_t _param_size,
|
||||
bool param_half_precision,
|
||||
bool grad_half_precision,
|
||||
float loss_scale)
|
||||
{
|
||||
size_t rounded_size = 0;
|
||||
|
||||
__half* params_cast_h = NULL;
|
||||
__half* grads_cast_h = NULL;
|
||||
if (param_half_precision) {
|
||||
params_cast_h = reinterpret_cast<__half*>(_params);
|
||||
}
|
||||
if (grad_half_precision) {
|
||||
grads_cast_h = reinterpret_cast<__half*>(grads);
|
||||
}
|
||||
void Adam_Optimizer::Step_4(float *_params, float *grads, float *_exp_avg,
|
||||
float *_exp_avg_sq, size_t _param_size,
|
||||
bool param_half_precision, bool grad_half_precision,
|
||||
float loss_scale) {
|
||||
size_t rounded_size = 0;
|
||||
|
||||
__half *params_cast_h = NULL;
|
||||
__half *grads_cast_h = NULL;
|
||||
if (param_half_precision) {
|
||||
params_cast_h = reinterpret_cast<__half *>(_params);
|
||||
}
|
||||
if (grad_half_precision) {
|
||||
grads_cast_h = reinterpret_cast<__half *>(grads);
|
||||
}
|
||||
|
||||
#if defined(__AVX512__) or defined(__AVX256__) or defined(__AVX2__)
|
||||
AVX_Data betta1_4;
|
||||
betta1_4.data = SIMD_SET(_betta1);
|
||||
AVX_Data betta2_4;
|
||||
betta2_4.data = SIMD_SET(_betta2);
|
||||
AVX_Data betta1_4;
|
||||
betta1_4.data = SIMD_SET(_betta1);
|
||||
AVX_Data betta2_4;
|
||||
betta2_4.data = SIMD_SET(_betta2);
|
||||
|
||||
float betta1_minus1 = 1 - _betta1;
|
||||
AVX_Data betta1_minus1_4;
|
||||
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
||||
float betta2_minus1 = 1 - _betta2;
|
||||
AVX_Data betta2_minus1_4;
|
||||
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
||||
float betta1_minus1 = 1 - _betta1;
|
||||
AVX_Data betta1_minus1_4;
|
||||
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
||||
float betta2_minus1 = 1 - _betta2;
|
||||
AVX_Data betta2_minus1_4;
|
||||
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
||||
|
||||
AVX_Data bias2_sqrt;
|
||||
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
||||
AVX_Data bias2_sqrt;
|
||||
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
||||
|
||||
AVX_Data eps_4;
|
||||
eps_4.data = SIMD_SET(_eps);
|
||||
AVX_Data eps_4;
|
||||
eps_4.data = SIMD_SET(_eps);
|
||||
|
||||
float step_size = -1 * _alpha / _bias_correction1;
|
||||
AVX_Data step_size_4;
|
||||
step_size_4.data = SIMD_SET(step_size);
|
||||
float step_size = -1 * _alpha / _bias_correction1;
|
||||
AVX_Data step_size_4;
|
||||
step_size_4.data = SIMD_SET(step_size);
|
||||
|
||||
float w_decay = -1 * _alpha * _weight_decay;
|
||||
AVX_Data weight_decay_4;
|
||||
if (_weight_decay > 0)
|
||||
weight_decay_4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
||||
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 4);
|
||||
float w_decay = -1 * _alpha * _weight_decay;
|
||||
AVX_Data weight_decay_4;
|
||||
if (_weight_decay > 0)
|
||||
weight_decay_4.data =
|
||||
(_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
||||
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 4);
|
||||
|
||||
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
||||
size_t offset = copy_size + t;
|
||||
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
if ((t + TILE) > rounded_size)
|
||||
copy_size = rounded_size - t;
|
||||
size_t offset = copy_size + t;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (size_t i = t; i < offset; i += SIMD_WIDTH * 4) {
|
||||
AVX_Data grad_4[4];
|
||||
AVX_Data momentum_4[4];
|
||||
AVX_Data variance_4[4];
|
||||
AVX_Data param_4[4];
|
||||
for (size_t i = t; i < offset; i += SIMD_WIDTH * 4) {
|
||||
AVX_Data grad_4[4];
|
||||
AVX_Data momentum_4[4];
|
||||
AVX_Data variance_4[4];
|
||||
AVX_Data param_4[4];
|
||||
#pragma unroll 4
|
||||
for (int j = 0; j < 4; j++) {
|
||||
if (grad_half_precision) {
|
||||
grad_4[j].data = SIMD_LOAD_HALF(grads_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
grad_4[j].data = SIMD_LOAD(grads + i + SIMD_WIDTH * j);
|
||||
}
|
||||
|
||||
if(loss_scale > 0) {
|
||||
AVX_Data loss_scale_vec;
|
||||
loss_scale_vec.data = SIMD_SET(loss_scale);
|
||||
grad_4[j].data = SIMD_DIV(grad_4[j].data, loss_scale_vec.data);
|
||||
}
|
||||
|
||||
momentum_4[j].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * j);
|
||||
variance_4[j].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * j);
|
||||
|
||||
if (param_half_precision) {
|
||||
param_4[j].data = SIMD_LOAD_HALF(params_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
param_4[j].data = SIMD_LOAD(_params + i + SIMD_WIDTH * j);
|
||||
}
|
||||
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad_4[j].data = SIMD_FMA(param_4[j].data, weight_decay_4.data, grad_4[j].data);
|
||||
}
|
||||
momentum_4[j].data = SIMD_MUL(momentum_4[j].data, betta1_4.data);
|
||||
momentum_4[j].data = SIMD_FMA(grad_4[j].data, betta1_minus1_4.data, momentum_4[j].data);
|
||||
variance_4[j].data = SIMD_MUL(variance_4[j].data, betta2_4.data);
|
||||
grad_4[j].data = SIMD_MUL(grad_4[j].data, grad_4[j].data);
|
||||
variance_4[j].data = SIMD_FMA(grad_4[j].data, betta2_minus1_4.data, variance_4[j].data);
|
||||
grad_4[j].data = SIMD_SQRT(variance_4[j].data);
|
||||
grad_4[j].data = SIMD_FMA(grad_4[j].data, bias2_sqrt.data, eps_4.data);
|
||||
grad_4[j].data = SIMD_DIV(momentum_4[j].data, grad_4[j].data);
|
||||
|
||||
if (_weight_decay > 0 && _adamw_mode) {
|
||||
param_4[j].data = SIMD_FMA(param_4[j].data, weight_decay_4.data, param_4[j].data);
|
||||
}
|
||||
param_4[j].data = SIMD_FMA(grad_4[j].data, step_size_4.data, param_4[j].data);
|
||||
if (param_half_precision) {
|
||||
SIMD_STORE_HALF((float*)(params_cast_h + i + SIMD_WIDTH * j), param_4[j].data);
|
||||
} else {
|
||||
SIMD_STORE(_params + i + SIMD_WIDTH * j, param_4[j].data);
|
||||
}
|
||||
SIMD_STORE(_exp_avg + i + SIMD_WIDTH * j, momentum_4[j].data);
|
||||
SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH * j, variance_4[j].data);
|
||||
}
|
||||
for (int j = 0; j < 4; j++) {
|
||||
if (grad_half_precision) {
|
||||
grad_4[j].data = SIMD_LOAD_HALF(grads_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
grad_4[j].data = SIMD_LOAD(grads + i + SIMD_WIDTH * j);
|
||||
}
|
||||
|
||||
if (loss_scale > 0) {
|
||||
AVX_Data loss_scale_vec;
|
||||
loss_scale_vec.data = SIMD_SET(loss_scale);
|
||||
grad_4[j].data = SIMD_DIV(grad_4[j].data, loss_scale_vec.data);
|
||||
}
|
||||
|
||||
momentum_4[j].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * j);
|
||||
variance_4[j].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * j);
|
||||
|
||||
if (param_half_precision) {
|
||||
param_4[j].data = SIMD_LOAD_HALF(params_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
param_4[j].data = SIMD_LOAD(_params + i + SIMD_WIDTH * j);
|
||||
}
|
||||
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad_4[j].data =
|
||||
SIMD_FMA(param_4[j].data, weight_decay_4.data, grad_4[j].data);
|
||||
}
|
||||
momentum_4[j].data = SIMD_MUL(momentum_4[j].data, betta1_4.data);
|
||||
momentum_4[j].data =
|
||||
SIMD_FMA(grad_4[j].data, betta1_minus1_4.data, momentum_4[j].data);
|
||||
variance_4[j].data = SIMD_MUL(variance_4[j].data, betta2_4.data);
|
||||
grad_4[j].data = SIMD_MUL(grad_4[j].data, grad_4[j].data);
|
||||
variance_4[j].data =
|
||||
SIMD_FMA(grad_4[j].data, betta2_minus1_4.data, variance_4[j].data);
|
||||
grad_4[j].data = SIMD_SQRT(variance_4[j].data);
|
||||
grad_4[j].data = SIMD_FMA(grad_4[j].data, bias2_sqrt.data, eps_4.data);
|
||||
grad_4[j].data = SIMD_DIV(momentum_4[j].data, grad_4[j].data);
|
||||
|
||||
if (_weight_decay > 0 && _adamw_mode) {
|
||||
param_4[j].data =
|
||||
SIMD_FMA(param_4[j].data, weight_decay_4.data, param_4[j].data);
|
||||
}
|
||||
param_4[j].data =
|
||||
SIMD_FMA(grad_4[j].data, step_size_4.data, param_4[j].data);
|
||||
if (param_half_precision) {
|
||||
SIMD_STORE_HALF((float *)(params_cast_h + i + SIMD_WIDTH * j),
|
||||
param_4[j].data);
|
||||
} else {
|
||||
SIMD_STORE(_params + i + SIMD_WIDTH * j, param_4[j].data);
|
||||
}
|
||||
SIMD_STORE(_exp_avg + i + SIMD_WIDTH * j, momentum_4[j].data);
|
||||
SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH * j, variance_4[j].data);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (_param_size > rounded_size)
|
||||
Step_1((param_half_precision ? (float*)(params_cast_h + rounded_size) : _params + rounded_size),
|
||||
(grad_half_precision ? (float*)(grads_cast_h + rounded_size) : grads + rounded_size),
|
||||
(_exp_avg + rounded_size),
|
||||
(_exp_avg_sq + rounded_size),
|
||||
(_param_size - rounded_size),
|
||||
param_half_precision,
|
||||
grad_half_precision,
|
||||
loss_scale);
|
||||
if (_param_size > rounded_size)
|
||||
Step_1((param_half_precision ? (float *)(params_cast_h + rounded_size)
|
||||
: _params + rounded_size),
|
||||
(grad_half_precision ? (float *)(grads_cast_h + rounded_size)
|
||||
: grads + rounded_size),
|
||||
(_exp_avg + rounded_size), (_exp_avg_sq + rounded_size),
|
||||
(_param_size - rounded_size), param_half_precision,
|
||||
grad_half_precision, loss_scale);
|
||||
}
|
||||
|
||||
int create_adam_optimizer(int optimizer_id,
|
||||
float alpha = 1e-3,
|
||||
float betta1 = 0.9,
|
||||
float betta2 = 0.999,
|
||||
float eps = 1e-8,
|
||||
float weight_decay = 0,
|
||||
bool adamw_mode = true,
|
||||
bool should_log = false)
|
||||
{
|
||||
auto opt =
|
||||
std::make_shared<Adam_Optimizer>(alpha, betta1, betta2, eps, weight_decay, adamw_mode);
|
||||
int create_adam_optimizer(int optimizer_id, float alpha = 1e-3,
|
||||
float betta1 = 0.9, float betta2 = 0.999,
|
||||
float eps = 1e-8, float weight_decay = 0,
|
||||
bool adamw_mode = true, bool should_log = false) {
|
||||
auto opt = std::make_shared<Adam_Optimizer>(alpha, betta1, betta2, eps,
|
||||
weight_decay, adamw_mode);
|
||||
|
||||
s_optimizers[optimizer_id] = opt;
|
||||
s_optimizers[optimizer_id] = opt;
|
||||
|
||||
if (should_log){
|
||||
if (should_log) {
|
||||
|
||||
std::string avx_type = "";
|
||||
std::string avx_type = "";
|
||||
#if defined(__AVX512__)
|
||||
avx_type = "AVX512";
|
||||
avx_type = "AVX512";
|
||||
#else
|
||||
#if defined(__AVX256__) or defined(__AVX2__)
|
||||
avx_type = "AVX2";
|
||||
avx_type = "AVX2";
|
||||
#else
|
||||
avx_type = "scalar";
|
||||
avx_type = "scalar";
|
||||
#endif
|
||||
#endif
|
||||
printf("Adam Optimizer #%d is created with %s arithmetic capability.\n",
|
||||
optimizer_id,
|
||||
avx_type.c_str());
|
||||
printf("Config: alpha=%f, betas=(%f, %f), weight_decay=%f, adam_w=%d\n",
|
||||
alpha,
|
||||
betta1,
|
||||
betta2,
|
||||
weight_decay,
|
||||
(int)adamw_mode);
|
||||
}
|
||||
printf("Adam Optimizer #%d is created with %s arithmetic capability.\n",
|
||||
optimizer_id, avx_type.c_str());
|
||||
printf("Config: alpha=%f, betas=(%f, %f), weight_decay=%f, adam_w=%d\n",
|
||||
alpha, betta1, betta2, weight_decay, (int)adamw_mode);
|
||||
}
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void Adam_Optimizer::Step_8(float* _params,
|
||||
float* grads,
|
||||
float* _exp_avg,
|
||||
float* _exp_avg_sq,
|
||||
size_t _param_size,
|
||||
bool param_half_precision,
|
||||
bool grad_half_precision,
|
||||
float loss_scale)
|
||||
{
|
||||
size_t rounded_size = 0;
|
||||
__half* params_cast_h = NULL;
|
||||
__half* grads_cast_h = NULL;
|
||||
if (param_half_precision) {
|
||||
params_cast_h = reinterpret_cast<__half*>(_params);
|
||||
}
|
||||
if (grad_half_precision) {
|
||||
grads_cast_h = reinterpret_cast<__half*>(grads);
|
||||
}
|
||||
void Adam_Optimizer::Step_8(float *_params, float *grads, float *_exp_avg,
|
||||
float *_exp_avg_sq, size_t _param_size,
|
||||
bool param_half_precision, bool grad_half_precision,
|
||||
float loss_scale) {
|
||||
size_t rounded_size = 0;
|
||||
__half *params_cast_h = NULL;
|
||||
__half *grads_cast_h = NULL;
|
||||
if (param_half_precision) {
|
||||
params_cast_h = reinterpret_cast<__half *>(_params);
|
||||
}
|
||||
if (grad_half_precision) {
|
||||
grads_cast_h = reinterpret_cast<__half *>(grads);
|
||||
}
|
||||
#if defined(__AVX512__) or defined(__AVX256__) or defined(__AVX2__)
|
||||
AVX_Data betta1_4;
|
||||
betta1_4.data = SIMD_SET(_betta1);
|
||||
AVX_Data betta2_4;
|
||||
betta2_4.data = SIMD_SET(_betta2);
|
||||
AVX_Data betta1_4;
|
||||
betta1_4.data = SIMD_SET(_betta1);
|
||||
AVX_Data betta2_4;
|
||||
betta2_4.data = SIMD_SET(_betta2);
|
||||
|
||||
float betta1_minus1 = 1 - _betta1;
|
||||
AVX_Data betta1_minus1_4;
|
||||
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
||||
float betta2_minus1 = 1 - _betta2;
|
||||
AVX_Data betta2_minus1_4;
|
||||
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
||||
float betta1_minus1 = 1 - _betta1;
|
||||
AVX_Data betta1_minus1_4;
|
||||
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
||||
float betta2_minus1 = 1 - _betta2;
|
||||
AVX_Data betta2_minus1_4;
|
||||
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
||||
|
||||
AVX_Data bias2_sqrt;
|
||||
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
||||
AVX_Data bias2_sqrt;
|
||||
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
||||
|
||||
AVX_Data eps_4;
|
||||
eps_4.data = SIMD_SET(_eps);
|
||||
AVX_Data eps_4;
|
||||
eps_4.data = SIMD_SET(_eps);
|
||||
|
||||
float step_size = -1 * _alpha / _bias_correction1;
|
||||
AVX_Data step_size_4;
|
||||
step_size_4.data = SIMD_SET(step_size);
|
||||
float step_size = -1 * _alpha / _bias_correction1;
|
||||
AVX_Data step_size_4;
|
||||
step_size_4.data = SIMD_SET(step_size);
|
||||
|
||||
float w_decay = -1 * _alpha * _weight_decay;
|
||||
AVX_Data weight_decay_4;
|
||||
if (_weight_decay > 0)
|
||||
weight_decay_4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
||||
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 8);
|
||||
float w_decay = -1 * _alpha * _weight_decay;
|
||||
AVX_Data weight_decay_4;
|
||||
if (_weight_decay > 0)
|
||||
weight_decay_4.data =
|
||||
(_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
||||
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 8);
|
||||
|
||||
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
||||
size_t offset = copy_size + t;
|
||||
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
if ((t + TILE) > rounded_size)
|
||||
copy_size = rounded_size - t;
|
||||
size_t offset = copy_size + t;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (size_t i = t; i < offset; i += SIMD_WIDTH * 8) {
|
||||
AVX_Data grad_4[8];
|
||||
AVX_Data momentum_4[8];
|
||||
AVX_Data variance_4[8];
|
||||
AVX_Data param_4[8];
|
||||
for (size_t i = t; i < offset; i += SIMD_WIDTH * 8) {
|
||||
AVX_Data grad_4[8];
|
||||
AVX_Data momentum_4[8];
|
||||
AVX_Data variance_4[8];
|
||||
AVX_Data param_4[8];
|
||||
#pragma unroll 8
|
||||
for (int j = 0; j < 8; j++) {
|
||||
if (grad_half_precision) {
|
||||
grad_4[j].data = SIMD_LOAD_HALF(grads_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
grad_4[j].data = SIMD_LOAD(grads + i + SIMD_WIDTH * j);
|
||||
}
|
||||
|
||||
if (loss_scale > 0) {
|
||||
AVX_Data loss_scale_vec;
|
||||
loss_scale_vec.data = SIMD_SET(loss_scale);
|
||||
grad_4[j].data = SIMD_DIV(grad_4[j].data, loss_scale_vec.data);
|
||||
}
|
||||
|
||||
momentum_4[j].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * j);
|
||||
variance_4[j].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * j);
|
||||
|
||||
if (param_half_precision) {
|
||||
param_4[j].data = SIMD_LOAD_HALF(params_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
param_4[j].data = SIMD_LOAD(_params + i + SIMD_WIDTH * j);
|
||||
}
|
||||
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad_4[j].data = SIMD_FMA(param_4[j].data, weight_decay_4.data, grad_4[j].data);
|
||||
}
|
||||
momentum_4[j].data = SIMD_MUL(momentum_4[j].data, betta1_4.data);
|
||||
momentum_4[j].data = SIMD_FMA(grad_4[j].data, betta1_minus1_4.data, momentum_4[j].data);
|
||||
variance_4[j].data = SIMD_MUL(variance_4[j].data, betta2_4.data);
|
||||
grad_4[j].data = SIMD_MUL(grad_4[j].data, grad_4[j].data);
|
||||
variance_4[j].data = SIMD_FMA(grad_4[j].data, betta2_minus1_4.data, variance_4[j].data);
|
||||
grad_4[j].data = SIMD_SQRT(variance_4[j].data);
|
||||
grad_4[j].data = SIMD_FMA(grad_4[j].data, bias2_sqrt.data, eps_4.data);
|
||||
grad_4[j].data = SIMD_DIV(momentum_4[j].data, grad_4[j].data);
|
||||
if (_weight_decay > 0 && _adamw_mode) {
|
||||
param_4[j].data = SIMD_FMA(param_4[j].data, weight_decay_4.data, param_4[j].data);
|
||||
}
|
||||
param_4[j].data = SIMD_FMA(grad_4[j].data, step_size_4.data, param_4[j].data);
|
||||
|
||||
if (param_half_precision) {
|
||||
SIMD_STORE_HALF((float*)(params_cast_h + i + SIMD_WIDTH * j), param_4[j].data);
|
||||
} else {
|
||||
SIMD_STORE(_params + i + SIMD_WIDTH * j, param_4[j].data);
|
||||
}
|
||||
|
||||
SIMD_STORE(_exp_avg + i + (SIMD_WIDTH * j), momentum_4[j].data);
|
||||
SIMD_STORE(_exp_avg_sq + i + (SIMD_WIDTH * j), variance_4[j].data);
|
||||
}
|
||||
for (int j = 0; j < 8; j++) {
|
||||
if (grad_half_precision) {
|
||||
grad_4[j].data = SIMD_LOAD_HALF(grads_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
grad_4[j].data = SIMD_LOAD(grads + i + SIMD_WIDTH * j);
|
||||
}
|
||||
|
||||
if (loss_scale > 0) {
|
||||
AVX_Data loss_scale_vec;
|
||||
loss_scale_vec.data = SIMD_SET(loss_scale);
|
||||
grad_4[j].data = SIMD_DIV(grad_4[j].data, loss_scale_vec.data);
|
||||
}
|
||||
|
||||
momentum_4[j].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * j);
|
||||
variance_4[j].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * j);
|
||||
|
||||
if (param_half_precision) {
|
||||
param_4[j].data = SIMD_LOAD_HALF(params_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
param_4[j].data = SIMD_LOAD(_params + i + SIMD_WIDTH * j);
|
||||
}
|
||||
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad_4[j].data =
|
||||
SIMD_FMA(param_4[j].data, weight_decay_4.data, grad_4[j].data);
|
||||
}
|
||||
momentum_4[j].data = SIMD_MUL(momentum_4[j].data, betta1_4.data);
|
||||
momentum_4[j].data =
|
||||
SIMD_FMA(grad_4[j].data, betta1_minus1_4.data, momentum_4[j].data);
|
||||
variance_4[j].data = SIMD_MUL(variance_4[j].data, betta2_4.data);
|
||||
grad_4[j].data = SIMD_MUL(grad_4[j].data, grad_4[j].data);
|
||||
variance_4[j].data =
|
||||
SIMD_FMA(grad_4[j].data, betta2_minus1_4.data, variance_4[j].data);
|
||||
grad_4[j].data = SIMD_SQRT(variance_4[j].data);
|
||||
grad_4[j].data = SIMD_FMA(grad_4[j].data, bias2_sqrt.data, eps_4.data);
|
||||
grad_4[j].data = SIMD_DIV(momentum_4[j].data, grad_4[j].data);
|
||||
if (_weight_decay > 0 && _adamw_mode) {
|
||||
param_4[j].data =
|
||||
SIMD_FMA(param_4[j].data, weight_decay_4.data, param_4[j].data);
|
||||
}
|
||||
param_4[j].data =
|
||||
SIMD_FMA(grad_4[j].data, step_size_4.data, param_4[j].data);
|
||||
|
||||
if (param_half_precision) {
|
||||
SIMD_STORE_HALF((float *)(params_cast_h + i + SIMD_WIDTH * j),
|
||||
param_4[j].data);
|
||||
} else {
|
||||
SIMD_STORE(_params + i + SIMD_WIDTH * j, param_4[j].data);
|
||||
}
|
||||
|
||||
SIMD_STORE(_exp_avg + i + (SIMD_WIDTH * j), momentum_4[j].data);
|
||||
SIMD_STORE(_exp_avg_sq + i + (SIMD_WIDTH * j), variance_4[j].data);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (_param_size > rounded_size)
|
||||
Step_4((param_half_precision ? (float*)(params_cast_h + rounded_size) : _params + rounded_size),
|
||||
(grad_half_precision ? (float*)(grads_cast_h + rounded_size) : grads + rounded_size),
|
||||
(_exp_avg + rounded_size),
|
||||
(_exp_avg_sq + rounded_size),
|
||||
(_param_size - rounded_size),
|
||||
param_half_precision,
|
||||
grad_half_precision,
|
||||
loss_scale);
|
||||
if (_param_size > rounded_size)
|
||||
Step_4((param_half_precision ? (float *)(params_cast_h + rounded_size)
|
||||
: _params + rounded_size),
|
||||
(grad_half_precision ? (float *)(grads_cast_h + rounded_size)
|
||||
: grads + rounded_size),
|
||||
(_exp_avg + rounded_size), (_exp_avg_sq + rounded_size),
|
||||
(_param_size - rounded_size), param_half_precision,
|
||||
grad_half_precision, loss_scale);
|
||||
}
|
||||
|
||||
int adam_step(int optimizer_id,
|
||||
|
@ -501,17 +502,13 @@ int adam_step(int optimizer_id,
|
|||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int destroy_adam_optimizer(int optimizer_id)
|
||||
{
|
||||
s_optimizers.erase(optimizer_id);
|
||||
return 0;
|
||||
int destroy_adam_optimizer(int optimizer_id) {
|
||||
s_optimizers.erase(optimizer_id);
|
||||
return 0;
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
||||
{
|
||||
m.def("adam_update", &adam_step, "CPU Adam update (C++)");
|
||||
m.def("create_adam", &create_adam_optimizer, "CPU Adam (C++)");
|
||||
m.def("destroy_adam", &destroy_adam_optimizer, "CPU Adam destroy (C++)");
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("adam_update", &adam_step, "CPU Adam update (C++)");
|
||||
m.def("create_adam", &create_adam_optimizer, "CPU Adam (C++)");
|
||||
m.def("destroy_adam", &destroy_adam_optimizer, "CPU Adam destroy (C++)");
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue