|
|
|
@ -1,4 +1,5 @@
|
|
|
|
|
// modified from https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_l2norm_kernel.cu |
|
|
|
|
// modified from |
|
|
|
|
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_l2norm_kernel.cu |
|
|
|
|
#include <ATen/ATen.h> |
|
|
|
|
#include <ATen/AccumulateType.h> |
|
|
|
|
#include <ATen/cuda/CUDAContext.h> |
|
|
|
@ -9,356 +10,311 @@
|
|
|
|
|
|
|
|
|
|
#include <assert.h> |
|
|
|
|
|
|
|
|
|
#include "type_shim.h" |
|
|
|
|
#include "multi_tensor_apply.cuh" |
|
|
|
|
#include "type_shim.h" |
|
|
|
|
|
|
|
|
|
#define BLOCK_SIZE 512 |
|
|
|
|
#define ILP 4 |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
__device__ __forceinline__ bool is_aligned(T *p) |
|
|
|
|
{ |
|
|
|
|
return ((uint64_t)p) % (ILP * sizeof(T)) == 0; |
|
|
|
|
template <typename T> __device__ __forceinline__ bool is_aligned(T *p) { |
|
|
|
|
return ((uint64_t)p) % (ILP * sizeof(T)) == 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
__device__ __forceinline__ void load_store(T *dst, T *src, int dst_offset, int src_offset) |
|
|
|
|
{ |
|
|
|
|
typedef typename std::aligned_storage<ILP * sizeof(T), ILP * alignof(T)>::type LT; |
|
|
|
|
((LT *)dst)[dst_offset] = ((LT *)src)[src_offset]; |
|
|
|
|
__device__ __forceinline__ void load_store(T *dst, T *src, int dst_offset, |
|
|
|
|
int src_offset) { |
|
|
|
|
typedef |
|
|
|
|
typename std::aligned_storage<ILP * sizeof(T), ILP * alignof(T)>::type LT; |
|
|
|
|
((LT *)dst)[dst_offset] = ((LT *)src)[src_offset]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename x_t> |
|
|
|
|
struct L2NormFunctor |
|
|
|
|
{ |
|
|
|
|
__device__ __forceinline__ void operator()( |
|
|
|
|
int chunk_size, |
|
|
|
|
volatile int *noop_gmem, |
|
|
|
|
TensorListMetadata<1> &tl, |
|
|
|
|
float *output, |
|
|
|
|
float *output_per_tensor, |
|
|
|
|
bool per_tensor, |
|
|
|
|
int max_chunks_per_tensor) |
|
|
|
|
{ |
|
|
|
|
// I'd like this kernel to propagate infs/nans. |
|
|
|
|
// if(*noop_gmem == 1) |
|
|
|
|
// return; |
|
|
|
|
|
|
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x]; |
|
|
|
|
int chunk_idx = tl.block_to_chunk[blockIdx.x]; |
|
|
|
|
int n = tl.sizes[tensor_loc]; |
|
|
|
|
|
|
|
|
|
x_t *x = (x_t *)tl.addresses[0][tensor_loc]; |
|
|
|
|
x += chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
n -= chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
__shared__ float s_vals[512]; |
|
|
|
|
|
|
|
|
|
float vals[ILP]; // = {0}; // this probably works too but I want to be sure... |
|
|
|
|
x_t r_x[ILP]; |
|
|
|
|
for (int i = 0; i < ILP; i++) |
|
|
|
|
{ |
|
|
|
|
vals[i] = 0.f; |
|
|
|
|
r_x[i] = 0; |
|
|
|
|
} |
|
|
|
|
template <typename x_t> struct L2NormFunctor { |
|
|
|
|
__device__ __forceinline__ void |
|
|
|
|
operator()(int chunk_size, volatile int *noop_gmem, TensorListMetadata<1> &tl, |
|
|
|
|
float *output, float *output_per_tensor, bool per_tensor, |
|
|
|
|
int max_chunks_per_tensor) { |
|
|
|
|
// I'd like this kernel to propagate infs/nans. |
|
|
|
|
// if(*noop_gmem == 1) |
|
|
|
|
// return; |
|
|
|
|
|
|
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x]; |
|
|
|
|
int chunk_idx = tl.block_to_chunk[blockIdx.x]; |
|
|
|
|
int n = tl.sizes[tensor_loc]; |
|
|
|
|
|
|
|
|
|
x_t *x = (x_t *)tl.addresses[0][tensor_loc]; |
|
|
|
|
x += chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
n -= chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
__shared__ float s_vals[512]; |
|
|
|
|
|
|
|
|
|
float |
|
|
|
|
vals[ILP]; // = {0}; // this probably works too but I want to be sure... |
|
|
|
|
x_t r_x[ILP]; |
|
|
|
|
for (int i = 0; i < ILP; i++) { |
|
|
|
|
vals[i] = 0.f; |
|
|
|
|
r_x[i] = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// to make things simple, we put aligned case in a different code path |
|
|
|
|
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x)) |
|
|
|
|
{ |
|
|
|
|
for (int i_start = threadIdx.x; i_start * ILP < n && i_start * ILP < chunk_size; i_start += blockDim.x) |
|
|
|
|
{ |
|
|
|
|
// load |
|
|
|
|
load_store(r_x, x, 0, i_start); |
|
|
|
|
// to make things simple, we put aligned case in a different code path |
|
|
|
|
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x)) { |
|
|
|
|
for (int i_start = threadIdx.x; |
|
|
|
|
i_start * ILP < n && i_start * ILP < chunk_size; |
|
|
|
|
i_start += blockDim.x) { |
|
|
|
|
// load |
|
|
|
|
load_store(r_x, x, 0, i_start); |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int ii = 0; ii < ILP; ii++) |
|
|
|
|
{ |
|
|
|
|
float next = static_cast<float>(r_x[ii]); |
|
|
|
|
vals[ii] += next * next; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
for (int ii = 0; ii < ILP; ii++) { |
|
|
|
|
float next = static_cast<float>(r_x[ii]); |
|
|
|
|
vals[ii] += next * next; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for (int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * ILP) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
for (int i_start = 0; i_start < n && i_start < chunk_size; |
|
|
|
|
i_start += blockDim.x * ILP) { |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int ii = 0; ii < ILP; ii++) |
|
|
|
|
{ |
|
|
|
|
int i = i_start + threadIdx.x + ii * blockDim.x; |
|
|
|
|
if (i < n && i < chunk_size) |
|
|
|
|
{ |
|
|
|
|
float next = static_cast<float>(x[i]); |
|
|
|
|
vals[ii] += next * next; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
for (int ii = 0; ii < ILP; ii++) { |
|
|
|
|
int i = i_start + threadIdx.x + ii * blockDim.x; |
|
|
|
|
if (i < n && i < chunk_size) { |
|
|
|
|
float next = static_cast<float>(x[i]); |
|
|
|
|
vals[ii] += next * next; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float val = 0.f; |
|
|
|
|
for (int i = 0; i < ILP; i++) |
|
|
|
|
val += vals[i]; |
|
|
|
|
|
|
|
|
|
float final = reduce_block_into_lanes(s_vals, val); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
{ |
|
|
|
|
if (!isfinite(final)) |
|
|
|
|
*noop_gmem = 1; // Blindly fire off a write. These will race but that's ok. |
|
|
|
|
output[blockIdx.x] += final; |
|
|
|
|
if (per_tensor) |
|
|
|
|
output_per_tensor[(tl.start_tensor_this_launch + tensor_loc) * max_chunks_per_tensor + chunk_idx] = final; |
|
|
|
|
} |
|
|
|
|
float val = 0.f; |
|
|
|
|
for (int i = 0; i < ILP; i++) |
|
|
|
|
val += vals[i]; |
|
|
|
|
|
|
|
|
|
float final = reduce_block_into_lanes(s_vals, val); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) { |
|
|
|
|
if (!isfinite(final)) |
|
|
|
|
*noop_gmem = |
|
|
|
|
1; // Blindly fire off a write. These will race but that's ok. |
|
|
|
|
output[blockIdx.x] += final; |
|
|
|
|
if (per_tensor) |
|
|
|
|
output_per_tensor[(tl.start_tensor_this_launch + tensor_loc) * |
|
|
|
|
max_chunks_per_tensor + |
|
|
|
|
chunk_idx] = final; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
// Probably better to template, but since we are not likely to support other norm |
|
|
|
|
template <typename x_t> |
|
|
|
|
struct MaxNormFunctor |
|
|
|
|
{ |
|
|
|
|
__device__ __forceinline__ void operator()( |
|
|
|
|
int chunk_size, |
|
|
|
|
volatile int *noop_gmem, |
|
|
|
|
TensorListMetadata<1> &tl, |
|
|
|
|
float *output, |
|
|
|
|
float *output_per_tensor, |
|
|
|
|
bool per_tensor, |
|
|
|
|
int max_chunks_per_tensor) |
|
|
|
|
{ |
|
|
|
|
// I'd like this kernel to propagate infs/nans. |
|
|
|
|
// if(*noop_gmem == 1) |
|
|
|
|
// return; |
|
|
|
|
|
|
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x]; |
|
|
|
|
int chunk_idx = tl.block_to_chunk[blockIdx.x]; |
|
|
|
|
int n = tl.sizes[tensor_loc]; |
|
|
|
|
|
|
|
|
|
x_t *x = (x_t *)tl.addresses[0][tensor_loc]; |
|
|
|
|
x += chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
n -= chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
__shared__ float s_vals[512]; |
|
|
|
|
|
|
|
|
|
float vals[ILP]; // = {0}; // this probably works too but I want to be sure... |
|
|
|
|
x_t r_x[ILP]; |
|
|
|
|
for (int i = 0; i < ILP; i++) |
|
|
|
|
{ |
|
|
|
|
vals[i] = 0.f; |
|
|
|
|
r_x[i] = 0; |
|
|
|
|
} |
|
|
|
|
// Probably better to template, but since we are not likely to support other |
|
|
|
|
// norm |
|
|
|
|
template <typename x_t> struct MaxNormFunctor { |
|
|
|
|
__device__ __forceinline__ void |
|
|
|
|
operator()(int chunk_size, volatile int *noop_gmem, TensorListMetadata<1> &tl, |
|
|
|
|
float *output, float *output_per_tensor, bool per_tensor, |
|
|
|
|
int max_chunks_per_tensor) { |
|
|
|
|
// I'd like this kernel to propagate infs/nans. |
|
|
|
|
// if(*noop_gmem == 1) |
|
|
|
|
// return; |
|
|
|
|
|
|
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x]; |
|
|
|
|
int chunk_idx = tl.block_to_chunk[blockIdx.x]; |
|
|
|
|
int n = tl.sizes[tensor_loc]; |
|
|
|
|
|
|
|
|
|
x_t *x = (x_t *)tl.addresses[0][tensor_loc]; |
|
|
|
|
x += chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
n -= chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
__shared__ float s_vals[512]; |
|
|
|
|
|
|
|
|
|
float |
|
|
|
|
vals[ILP]; // = {0}; // this probably works too but I want to be sure... |
|
|
|
|
x_t r_x[ILP]; |
|
|
|
|
for (int i = 0; i < ILP; i++) { |
|
|
|
|
vals[i] = 0.f; |
|
|
|
|
r_x[i] = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// to make things simple, we put aligned case in a different code path |
|
|
|
|
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x)) |
|
|
|
|
{ |
|
|
|
|
for (int i_start = threadIdx.x; i_start * ILP < n && i_start * ILP < chunk_size; i_start += blockDim.x) |
|
|
|
|
{ |
|
|
|
|
// load |
|
|
|
|
load_store(r_x, x, 0, i_start); |
|
|
|
|
// to make things simple, we put aligned case in a different code path |
|
|
|
|
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(x)) { |
|
|
|
|
for (int i_start = threadIdx.x; |
|
|
|
|
i_start * ILP < n && i_start * ILP < chunk_size; |
|
|
|
|
i_start += blockDim.x) { |
|
|
|
|
// load |
|
|
|
|
load_store(r_x, x, 0, i_start); |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int ii = 0; ii < ILP; ii++) |
|
|
|
|
{ |
|
|
|
|
float next = static_cast<float>(r_x[ii]); |
|
|
|
|
vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
for (int ii = 0; ii < ILP; ii++) { |
|
|
|
|
float next = static_cast<float>(r_x[ii]); |
|
|
|
|
vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for (int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * ILP) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
for (int i_start = 0; i_start < n && i_start < chunk_size; |
|
|
|
|
i_start += blockDim.x * ILP) { |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int ii = 0; ii < ILP; ii++) |
|
|
|
|
{ |
|
|
|
|
int i = i_start + threadIdx.x + ii * blockDim.x; |
|
|
|
|
if (i < n && i < chunk_size) |
|
|
|
|
{ |
|
|
|
|
float next = static_cast<float>(x[i]); |
|
|
|
|
vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
for (int ii = 0; ii < ILP; ii++) { |
|
|
|
|
int i = i_start + threadIdx.x + ii * blockDim.x; |
|
|
|
|
if (i < n && i < chunk_size) { |
|
|
|
|
float next = static_cast<float>(x[i]); |
|
|
|
|
vals[ii] = fmaxf(fabsf(vals[ii]), fabsf(next)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float val = 0.f; |
|
|
|
|
for (int i = 0; i < ILP; i++) |
|
|
|
|
val = fmaxf(fabsf(val), fabsf(vals[i])); |
|
|
|
|
|
|
|
|
|
float final = reduce_block_into_lanes_max_op(s_vals, val); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
{ |
|
|
|
|
if (!isfinite(final)) |
|
|
|
|
*noop_gmem = 1; // Blindly fire off a write. These will race but that's ok. |
|
|
|
|
output[blockIdx.x] = fmaxf(fabsf(output[blockIdx.x]), fabsf(final)); |
|
|
|
|
if (per_tensor) |
|
|
|
|
output_per_tensor[(tl.start_tensor_this_launch + tensor_loc) * max_chunks_per_tensor + chunk_idx] = final; |
|
|
|
|
} |
|
|
|
|
float val = 0.f; |
|
|
|
|
for (int i = 0; i < ILP; i++) |
|
|
|
|
val = fmaxf(fabsf(val), fabsf(vals[i])); |
|
|
|
|
|
|
|
|
|
float final = reduce_block_into_lanes_max_op(s_vals, val); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) { |
|
|
|
|
if (!isfinite(final)) |
|
|
|
|
*noop_gmem = |
|
|
|
|
1; // Blindly fire off a write. These will race but that's ok. |
|
|
|
|
output[blockIdx.x] = fmaxf(fabsf(output[blockIdx.x]), fabsf(final)); |
|
|
|
|
if (per_tensor) |
|
|
|
|
output_per_tensor[(tl.start_tensor_this_launch + tensor_loc) * |
|
|
|
|
max_chunks_per_tensor + |
|
|
|
|
chunk_idx] = final; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
__global__ void cleanup( |
|
|
|
|
float *output, |
|
|
|
|
float *output_per_tensor, |
|
|
|
|
float *ret, |
|
|
|
|
float *ret_per_tensor, |
|
|
|
|
bool per_tensor, |
|
|
|
|
int max_chunks_per_tensor) |
|
|
|
|
{ |
|
|
|
|
__shared__ float vals[512]; |
|
|
|
|
|
|
|
|
|
if (blockIdx.x == 0) |
|
|
|
|
{ |
|
|
|
|
float val = 0; |
|
|
|
|
if (threadIdx.x < 320) |
|
|
|
|
val = output[threadIdx.x]; |
|
|
|
|
|
|
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
*ret = sqrt(final); |
|
|
|
|
} |
|
|
|
|
__global__ void cleanup(float *output, float *output_per_tensor, float *ret, |
|
|
|
|
float *ret_per_tensor, bool per_tensor, |
|
|
|
|
int max_chunks_per_tensor) { |
|
|
|
|
__shared__ float vals[512]; |
|
|
|
|
|
|
|
|
|
if (per_tensor) |
|
|
|
|
{ |
|
|
|
|
float *output_this_tensor = output_per_tensor + blockIdx.x * max_chunks_per_tensor; |
|
|
|
|
if (blockIdx.x == 0) { |
|
|
|
|
float val = 0; |
|
|
|
|
if (threadIdx.x < 320) |
|
|
|
|
val = output[threadIdx.x]; |
|
|
|
|
|
|
|
|
|
float val = 0; |
|
|
|
|
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) |
|
|
|
|
val += output_this_tensor[i]; |
|
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
|
|
|
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
*ret = sqrt(final); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
ret_per_tensor[blockIdx.x] = sqrt(final); |
|
|
|
|
} |
|
|
|
|
if (per_tensor) { |
|
|
|
|
float *output_this_tensor = |
|
|
|
|
output_per_tensor + blockIdx.x * max_chunks_per_tensor; |
|
|
|
|
|
|
|
|
|
float val = 0; |
|
|
|
|
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) |
|
|
|
|
val += output_this_tensor[i]; |
|
|
|
|
|
|
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
ret_per_tensor[blockIdx.x] = sqrt(final); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__global__ void cleanup_v2( |
|
|
|
|
float *output, |
|
|
|
|
float *output_per_tensor, |
|
|
|
|
float *ret, |
|
|
|
|
float *ret_per_tensor, |
|
|
|
|
bool per_tensor, |
|
|
|
|
int max_chunks_per_tensor, |
|
|
|
|
int norm_type, |
|
|
|
|
float alpha, |
|
|
|
|
float beta) |
|
|
|
|
{ |
|
|
|
|
__shared__ float vals[512]; |
|
|
|
|
|
|
|
|
|
if (blockIdx.x == 0) |
|
|
|
|
{ |
|
|
|
|
float val = 0; |
|
|
|
|
if (threadIdx.x < 320) |
|
|
|
|
val = output[threadIdx.x]; |
|
|
|
|
|
|
|
|
|
if (norm_type == 0) |
|
|
|
|
{ |
|
|
|
|
float final = reduce_block_into_lanes_max_op(vals, val); |
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
*ret = alpha * (*ret) + beta * final; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
*ret = sqrt(alpha * (*ret) * (*ret) + beta * final); |
|
|
|
|
} |
|
|
|
|
__global__ void cleanup_v2(float *output, float *output_per_tensor, float *ret, |
|
|
|
|
float *ret_per_tensor, bool per_tensor, |
|
|
|
|
int max_chunks_per_tensor, int norm_type, |
|
|
|
|
float alpha, float beta) { |
|
|
|
|
__shared__ float vals[512]; |
|
|
|
|
|
|
|
|
|
if (blockIdx.x == 0) { |
|
|
|
|
float val = 0; |
|
|
|
|
if (threadIdx.x < 320) |
|
|
|
|
val = output[threadIdx.x]; |
|
|
|
|
|
|
|
|
|
if (norm_type == 0) { |
|
|
|
|
float final = reduce_block_into_lanes_max_op(vals, val); |
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
*ret = alpha * (*ret) + beta * final; |
|
|
|
|
} else { |
|
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
*ret = sqrt(alpha * (*ret) * (*ret) + beta * final); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (per_tensor) |
|
|
|
|
{ |
|
|
|
|
float *output_this_tensor = output_per_tensor + blockIdx.x * max_chunks_per_tensor; |
|
|
|
|
if (per_tensor) { |
|
|
|
|
float *output_this_tensor = |
|
|
|
|
output_per_tensor + blockIdx.x * max_chunks_per_tensor; |
|
|
|
|
|
|
|
|
|
if (norm_type == 0) |
|
|
|
|
{ |
|
|
|
|
float val = 0; |
|
|
|
|
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) |
|
|
|
|
val = fmaxf(fabsf(val), fabsf(output_this_tensor[i])); |
|
|
|
|
if (norm_type == 0) { |
|
|
|
|
float val = 0; |
|
|
|
|
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) |
|
|
|
|
val = fmaxf(fabsf(val), fabsf(output_this_tensor[i])); |
|
|
|
|
|
|
|
|
|
float final = reduce_block_into_lanes_max_op(vals, val); |
|
|
|
|
float final = reduce_block_into_lanes_max_op(vals, val); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
ret_per_tensor[blockIdx.x] = alpha * ret_per_tensor[blockIdx.x] + beta * final; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
float val = 0; |
|
|
|
|
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) |
|
|
|
|
val += output_this_tensor[i]; |
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
ret_per_tensor[blockIdx.x] = |
|
|
|
|
alpha * ret_per_tensor[blockIdx.x] + beta * final; |
|
|
|
|
} else { |
|
|
|
|
float val = 0; |
|
|
|
|
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) |
|
|
|
|
val += output_this_tensor[i]; |
|
|
|
|
|
|
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
ret_per_tensor[blockIdx.x] = sqrt(alpha * ret_per_tensor[blockIdx.x] * ret_per_tensor[blockIdx.x] + beta * final); |
|
|
|
|
} |
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
ret_per_tensor[blockIdx.x] = sqrt(alpha * ret_per_tensor[blockIdx.x] * |
|
|
|
|
ret_per_tensor[blockIdx.x] + |
|
|
|
|
beta * final); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda( |
|
|
|
|
int chunk_size, |
|
|
|
|
at::Tensor noop_flag, |
|
|
|
|
std::vector<std::vector<at::Tensor>> tensor_lists, |
|
|
|
|
at::optional<bool> per_tensor_python) |
|
|
|
|
{ |
|
|
|
|
bool per_tensor = per_tensor_python.has_value() ? per_tensor_python.value() : false; |
|
|
|
|
|
|
|
|
|
auto float_options = tensor_lists[0][0].options().dtype(at::kFloat); |
|
|
|
|
auto output = at::zeros({320}, float_options); |
|
|
|
|
|
|
|
|
|
at::Tensor output_per_tensor; |
|
|
|
|
at::Tensor ret_per_tensor; |
|
|
|
|
|
|
|
|
|
int ntensors = tensor_lists[0].size(); |
|
|
|
|
int max_chunks_per_tensor = -1; |
|
|
|
|
|
|
|
|
|
if (per_tensor) |
|
|
|
|
{ |
|
|
|
|
for (int t = 0; t < ntensors; t++) |
|
|
|
|
{ |
|
|
|
|
int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size; |
|
|
|
|
if (max_chunks_this_tensor > max_chunks_per_tensor) |
|
|
|
|
max_chunks_per_tensor = max_chunks_this_tensor; |
|
|
|
|
} |
|
|
|
|
output_per_tensor = at::zeros({ntensors * max_chunks_per_tensor}, float_options); |
|
|
|
|
ret_per_tensor = at::empty({ntensors}, float_options); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
ret_per_tensor = at::empty({0}, float_options); |
|
|
|
|
} |
|
|
|
|
std::tuple<at::Tensor, at::Tensor> |
|
|
|
|
multi_tensor_l2norm_cuda(int chunk_size, at::Tensor noop_flag, |
|
|
|
|
std::vector<std::vector<at::Tensor>> tensor_lists, |
|
|
|
|
at::optional<bool> per_tensor_python) { |
|
|
|
|
bool per_tensor = |
|
|
|
|
per_tensor_python.has_value() ? per_tensor_python.value() : false; |
|
|
|
|
|
|
|
|
|
auto float_options = tensor_lists[0][0].options().dtype(at::kFloat); |
|
|
|
|
auto output = at::zeros({320}, float_options); |
|
|
|
|
|
|
|
|
|
at::Tensor output_per_tensor; |
|
|
|
|
at::Tensor ret_per_tensor; |
|
|
|
|
|
|
|
|
|
int ntensors = tensor_lists[0].size(); |
|
|
|
|
int max_chunks_per_tensor = -1; |
|
|
|
|
|
|
|
|
|
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda", |
|
|
|
|
multi_tensor_apply<1>( |
|
|
|
|
BLOCK_SIZE, |
|
|
|
|
chunk_size, |
|
|
|
|
noop_flag, |
|
|
|
|
tensor_lists, |
|
|
|
|
L2NormFunctor<scalar_t_0>(), |
|
|
|
|
output.DATA_PTR<float>(), |
|
|
|
|
per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr, |
|
|
|
|
per_tensor, |
|
|
|
|
max_chunks_per_tensor);) |
|
|
|
|
|
|
|
|
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
|
|
|
// AT_CUDA_CHECK(cudaDeviceSynchronize()); |
|
|
|
|
|
|
|
|
|
// This involves one more small kernel launches, but will be negligible end to end. |
|
|
|
|
// I could get rid of these by hacking the functor + multi tensor harness with persistence |
|
|
|
|
// logic, but keeping it simple for now |
|
|
|
|
auto ret = at::empty({1}, output.options()); |
|
|
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(output)); |
|
|
|
|
auto stream = at::cuda::getCurrentCUDAStream(); |
|
|
|
|
cleanup<<<per_tensor ? ntensors : 1, 512, 0, stream>>>( |
|
|
|
|
output.DATA_PTR<float>(), |
|
|
|
|
per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr, |
|
|
|
|
ret.DATA_PTR<float>(), |
|
|
|
|
per_tensor ? ret_per_tensor.DATA_PTR<float>() : nullptr, |
|
|
|
|
per_tensor, |
|
|
|
|
max_chunks_per_tensor); |
|
|
|
|
|
|
|
|
|
return std::tuple<at::Tensor, at::Tensor>(ret, ret_per_tensor); |
|
|
|
|
if (per_tensor) { |
|
|
|
|
for (int t = 0; t < ntensors; t++) { |
|
|
|
|
int max_chunks_this_tensor = |
|
|
|
|
(tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size; |
|
|
|
|
if (max_chunks_this_tensor > max_chunks_per_tensor) |
|
|
|
|
max_chunks_per_tensor = max_chunks_this_tensor; |
|
|
|
|
} |
|
|
|
|
output_per_tensor = |
|
|
|
|
at::zeros({ntensors * max_chunks_per_tensor}, float_options); |
|
|
|
|
ret_per_tensor = at::empty({ntensors}, float_options); |
|
|
|
|
} else { |
|
|
|
|
ret_per_tensor = at::empty({0}, float_options); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
DISPATCH_FLOAT_AND_HALF( |
|
|
|
|
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda", |
|
|
|
|
multi_tensor_apply<1>( |
|
|
|
|
BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, |
|
|
|
|
L2NormFunctor<scalar_t_0>(), output.DATA_PTR<float>(), |
|
|
|
|
per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr, |
|
|
|
|
per_tensor, max_chunks_per_tensor);) |
|
|
|
|
|
|
|
|
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
|
|
|
// AT_CUDA_CHECK(cudaDeviceSynchronize()); |
|
|
|
|
|
|
|
|
|
// This involves one more small kernel launches, but will be negligible end to |
|
|
|
|
// end. I could get rid of these by hacking the functor + multi tensor harness |
|
|
|
|
// with persistence logic, but keeping it simple for now |
|
|
|
|
auto ret = at::empty({1}, output.options()); |
|
|
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(output)); |
|
|
|
|
auto stream = at::cuda::getCurrentCUDAStream(); |
|
|
|
|
cleanup<<<per_tensor ? ntensors : 1, 512, 0, stream>>>( |
|
|
|
|
output.DATA_PTR<float>(), |
|
|
|
|
per_tensor ? output_per_tensor.DATA_PTR<float>() : nullptr, |
|
|
|
|
ret.DATA_PTR<float>(), |
|
|
|
|
per_tensor ? ret_per_tensor.DATA_PTR<float>() : nullptr, per_tensor, |
|
|
|
|
max_chunks_per_tensor); |
|
|
|
|
|
|
|
|
|
return std::tuple<at::Tensor, at::Tensor>(ret, ret_per_tensor); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Compute and update grad norm |
|
|
|
@ -366,90 +322,66 @@ std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
|
|
|
|
|
// L-2: gn = sqrt(a * gn^2 + b * n^2) |
|
|
|
|
// L-inf: gn = a * gn + b * n |
|
|
|
|
void multi_tensor_norm_out_cuda( |
|
|
|
|
int chunk_size, |
|
|
|
|
at::Tensor noop_flag, |
|
|
|
|
std::vector<std::vector<at::Tensor>> tensor_lists, |
|
|
|
|
at::Tensor out, |
|
|
|
|
const float alpha, |
|
|
|
|
const float beta, |
|
|
|
|
const int norm_type) |
|
|
|
|
{ |
|
|
|
|
auto float_options = tensor_lists[0][0].options().dtype(at::kFloat); |
|
|
|
|
TORCH_CHECK(tensor_lists[0][0].device() == noop_flag.device(), "noop flag should be on the same device as tensors"); |
|
|
|
|
// we don't need global thus uses empty here |
|
|
|
|
auto output = at::empty({320}, float_options); |
|
|
|
|
|
|
|
|
|
at::Tensor output_per_tensor; |
|
|
|
|
at::Tensor ret_per_tensor; |
|
|
|
|
|
|
|
|
|
int ntensors = tensor_lists[0].size(); |
|
|
|
|
int max_chunks_per_tensor = -1; |
|
|
|
|
|
|
|
|
|
for (int t = 0; t < ntensors; t++) |
|
|
|
|
{ |
|
|
|
|
int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size; |
|
|
|
|
if (max_chunks_this_tensor > max_chunks_per_tensor) |
|
|
|
|
max_chunks_per_tensor = max_chunks_this_tensor; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Although it is single write then read, still need to be zero |
|
|
|
|
// Since tailing element also participate cleanup |
|
|
|
|
output_per_tensor = at::zeros({ntensors * max_chunks_per_tensor}, float_options); |
|
|
|
|
|
|
|
|
|
if (norm_type == 0) |
|
|
|
|
{ |
|
|
|
|
DISPATCH_FLOAT_AND_HALF( |
|
|
|
|
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_maxnorm_cuda", |
|
|
|
|
multi_tensor_apply<1>( |
|
|
|
|
BLOCK_SIZE, |
|
|
|
|
chunk_size, |
|
|
|
|
noop_flag, |
|
|
|
|
tensor_lists, |
|
|
|
|
MaxNormFunctor<scalar_t_0>(), |
|
|
|
|
output.DATA_PTR<float>(), |
|
|
|
|
output_per_tensor.DATA_PTR<float>(), |
|
|
|
|
true, |
|
|
|
|
max_chunks_per_tensor);) |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
DISPATCH_FLOAT_AND_HALF( |
|
|
|
|
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda", |
|
|
|
|
multi_tensor_apply<1>( |
|
|
|
|
BLOCK_SIZE, |
|
|
|
|
chunk_size, |
|
|
|
|
noop_flag, |
|
|
|
|
tensor_lists, |
|
|
|
|
L2NormFunctor<scalar_t_0>(), |
|
|
|
|
output.DATA_PTR<float>(), |
|
|
|
|
output_per_tensor.DATA_PTR<float>(), |
|
|
|
|
true, |
|
|
|
|
max_chunks_per_tensor);) |
|
|
|
|
} |
|
|
|
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
|
|
|
|
|
|
|
|
// AT_CUDA_CHECK(cudaDeviceSynchronize()); |
|
|
|
|
|
|
|
|
|
// This involves one more small kernel launches, but will be negligible end to end. |
|
|
|
|
// I could get rid of these by hacking the functor + multi tensor harness with persistence |
|
|
|
|
// logic, but keeping it simple for now |
|
|
|
|
auto ret = at::empty({1}, output.options()); |
|
|
|
|
|
|
|
|
|
// Adding the following device guard since it happens sometimes that the |
|
|
|
|
// tensors are on one device and the cuda stream is on another device which |
|
|
|
|
// results in ILLEGAL MEM ACCESS error. |
|
|
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(output)); |
|
|
|
|
auto stream = at::cuda::getCurrentCUDAStream(); |
|
|
|
|
cleanup_v2<<<ntensors, 512, 0, stream>>>( |
|
|
|
|
output.DATA_PTR<float>(), |
|
|
|
|
output_per_tensor.DATA_PTR<float>(), |
|
|
|
|
ret.DATA_PTR<float>(), |
|
|
|
|
out.DATA_PTR<float>(), |
|
|
|
|
true, |
|
|
|
|
max_chunks_per_tensor, |
|
|
|
|
norm_type, |
|
|
|
|
alpha, |
|
|
|
|
beta); |
|
|
|
|
|
|
|
|
|
return; |
|
|
|
|
int chunk_size, at::Tensor noop_flag, |
|
|
|
|
std::vector<std::vector<at::Tensor>> tensor_lists, at::Tensor out, |
|
|
|
|
const float alpha, const float beta, const int norm_type) { |
|
|
|
|
auto float_options = tensor_lists[0][0].options().dtype(at::kFloat); |
|
|
|
|
TORCH_CHECK(tensor_lists[0][0].device() == noop_flag.device(), |
|
|
|
|
"noop flag should be on the same device as tensors"); |
|
|
|
|
// we don't need global thus uses empty here |
|
|
|
|
auto output = at::empty({320}, float_options); |
|
|
|
|
|
|
|
|
|
at::Tensor output_per_tensor; |
|
|
|
|
at::Tensor ret_per_tensor; |
|
|
|
|
|
|
|
|
|
int ntensors = tensor_lists[0].size(); |
|
|
|
|
int max_chunks_per_tensor = -1; |
|
|
|
|
|
|
|
|
|
for (int t = 0; t < ntensors; t++) { |
|
|
|
|
int max_chunks_this_tensor = |
|
|
|
|
(tensor_lists[0][t].numel() + chunk_size - 1) / chunk_size; |
|
|
|
|
if (max_chunks_this_tensor > max_chunks_per_tensor) |
|
|
|
|
max_chunks_per_tensor = max_chunks_this_tensor; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Although it is single write then read, still need to be zero |
|
|
|
|
// Since tailing element also participate cleanup |
|
|
|
|
output_per_tensor = |
|
|
|
|
at::zeros({ntensors * max_chunks_per_tensor}, float_options); |
|
|
|
|
|
|
|
|
|
if (norm_type == 0) { |
|
|
|
|
DISPATCH_FLOAT_AND_HALF( |
|
|
|
|
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_maxnorm_cuda", |
|
|
|
|
multi_tensor_apply<1>( |
|
|
|
|
BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, |
|
|
|
|
MaxNormFunctor<scalar_t_0>(), output.DATA_PTR<float>(), |
|
|
|
|
output_per_tensor.DATA_PTR<float>(), true, max_chunks_per_tensor);) |
|
|
|
|
} else { |
|
|
|
|
DISPATCH_FLOAT_AND_HALF( |
|
|
|
|
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda", |
|
|
|
|
multi_tensor_apply<1>( |
|
|
|
|
BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, |
|
|
|
|
L2NormFunctor<scalar_t_0>(), output.DATA_PTR<float>(), |
|
|
|
|
output_per_tensor.DATA_PTR<float>(), true, max_chunks_per_tensor);) |
|
|
|
|
} |
|
|
|
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
|
|
|
|
|
|
|
|
// AT_CUDA_CHECK(cudaDeviceSynchronize()); |
|
|
|
|
|
|
|
|
|
// This involves one more small kernel launches, but will be negligible end to |
|
|
|
|
// end. I could get rid of these by hacking the functor + multi tensor harness |
|
|
|
|
// with persistence logic, but keeping it simple for now |
|
|
|
|
auto ret = at::empty({1}, output.options()); |
|
|
|
|
|
|
|
|
|
// Adding the following device guard since it happens sometimes that the |
|
|
|
|
// tensors are on one device and the cuda stream is on another device which |
|
|
|
|
// results in ILLEGAL MEM ACCESS error. |
|
|
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(output)); |
|
|
|
|
auto stream = at::cuda::getCurrentCUDAStream(); |
|
|
|
|
cleanup_v2<<<ntensors, 512, 0, stream>>>( |
|
|
|
|
output.DATA_PTR<float>(), output_per_tensor.DATA_PTR<float>(), |
|
|
|
|
ret.DATA_PTR<float>(), out.DATA_PTR<float>(), true, max_chunks_per_tensor, |
|
|
|
|
norm_type, alpha, beta); |
|
|
|
|
|
|
|
|
|
return; |
|
|
|
|
} |