mirror of https://github.com/hpcaitech/ColossalAI
Jiarui Fang
2 years ago
committed by
GitHub
4 changed files with 1 additions and 181 deletions
@ -1,51 +0,0 @@
|
||||
import torch.nn |
||||
|
||||
from colossalai.tensor.colo_parameter import ColoParameter |
||||
from colossalai.tensor.param_op_hook import ParamOpHookManager |
||||
from colossalai.gemini.ophooks import ParamMemHook |
||||
from colossalai.nn.parallel.data_parallel import _cast_float |
||||
|
||||
|
||||
class ParamWrapper(): |
||||
|
||||
def __init__(self, module: torch.nn.Module, dtype: torch.dtype = torch.half): |
||||
super().__init__() |
||||
self.module = module |
||||
self.dtype = dtype |
||||
self.param_op_hook = ParamMemHook() |
||||
|
||||
for p in module.parameters(): |
||||
assert isinstance(p, ColoParameter) |
||||
p.data = p.data.to(dtype) |
||||
|
||||
self._cast_buffers_to_cuda_dtype() |
||||
|
||||
def __call__(self, *args, **kwargs): |
||||
return self.forward(*args, **kwargs) |
||||
|
||||
def _pre_forward(self): |
||||
self.param_op_hook.mem_monitor.start() |
||||
|
||||
def forward(self, *args, **kwargs): |
||||
args, kwargs = _cast_float(args, self.dtype), _cast_float(kwargs, self.dtype) |
||||
self.module.zero_grad(set_to_none=True) |
||||
self._pre_forward() |
||||
with ParamOpHookManager.use_hooks(self.param_op_hook): |
||||
outputs = self.module(*args, **kwargs) |
||||
return outputs |
||||
|
||||
def backward(self, loss): |
||||
with self.param_op_hook.switch_to_backward(), ParamOpHookManager.use_hooks(self.param_op_hook): |
||||
loss.backward() |
||||
self._post_backward() |
||||
|
||||
def _post_backward(self): |
||||
cuda_volume = self.param_op_hook.mem_monitor.finish() |
||||
last_model_data = self.param_op_hook._model_data_list[-1] |
||||
self.param_op_hook._non_model_data_list.append(cuda_volume - last_model_data) |
||||
|
||||
def _cast_buffers_to_cuda_dtype(self): |
||||
for buffer in self.module.buffers(): |
||||
buffer.data = buffer.cuda() |
||||
if torch.is_floating_point(buffer): |
||||
buffer.data = buffer.data.to(self.dtype) |
@ -1,81 +0,0 @@
|
||||
from contextlib import contextmanager |
||||
from enum import Enum |
||||
from functools import partial |
||||
from typing import List |
||||
|
||||
import torch |
||||
|
||||
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor |
||||
from colossalai.tensor.param_op_hook import ParamOpHook |
||||
|
||||
|
||||
class TrainingPhase(Enum): |
||||
FORWARD = 0 |
||||
BACKWARD = 1 |
||||
|
||||
|
||||
class ParamMemHook(ParamOpHook): |
||||
|
||||
def __init__(self) -> None: |
||||
super().__init__() |
||||
self._training_phase = TrainingPhase.FORWARD |
||||
self.mem_monitor = SyncCudaMemoryMonitor() |
||||
self._non_model_data_list = [] |
||||
self._model_data_list = [] |
||||
|
||||
def _move_params_to_dev(self, params, dev: str) -> int: |
||||
assert isinstance(dev, str), f"device should be a str not torch.device" |
||||
comm_volume = 0 |
||||
for p in params: |
||||
if p.data.device.type != dev: |
||||
p.data = p.data.to(dev) |
||||
comm_volume += p.data.numel() * p.data.element_size() |
||||
if p.grad is not None: |
||||
if p.grad.device.type != dev: |
||||
p.grad = p.grad.to(dev) |
||||
comm_volume += p.grad.numel() * p.grad.element_size() |
||||
return comm_volume |
||||
|
||||
def sample_model_data(self, params): |
||||
data_volume = 0 |
||||
for p in params: |
||||
data_volume += p.data.numel() * p.data.element_size() |
||||
if self._training_phase == TrainingPhase.BACKWARD: |
||||
# add param.grad, actually param.grad is None in this time |
||||
data_volume *= 2 |
||||
self._model_data_list.append(data_volume) |
||||
|
||||
def pre_op(self, params): |
||||
cuda_volume = self.mem_monitor.finish() |
||||
if len(self._model_data_list): |
||||
self._non_model_data_list.append(cuda_volume - self._model_data_list[-1]) |
||||
self._move_params_to_dev(params, 'cuda') |
||||
self.sample_model_data(params) |
||||
self.mem_monitor.start() |
||||
|
||||
def post_op(self, params): |
||||
self._move_params_to_dev(params, 'cpu') |
||||
|
||||
def pre_forward(self, params: List[torch.Tensor]) -> None: |
||||
self.pre_op(params) |
||||
|
||||
def post_forward(self, params: List[torch.Tensor]) -> None: |
||||
self.post_op(params) |
||||
|
||||
def pre_backward(self, params: List[torch.Tensor]) -> None: |
||||
self.pre_op(params) |
||||
|
||||
def post_backward(self, params: List[torch.Tensor]) -> None: |
||||
self.post_op(params) |
||||
|
||||
@contextmanager |
||||
def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD): |
||||
old_training_phase = self._training_phase |
||||
try: |
||||
self._training_phase = training_phase |
||||
yield |
||||
finally: |
||||
self._training_phase = old_training_phase |
||||
|
||||
switch_to_backward = switch_training_phase |
||||
switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD) |
@ -1,47 +0,0 @@
|
||||
import numpy as np |
||||
import torch |
||||
|
||||
from colossalai.gemini.memory_tracer.param_tracer_wrapper import ParamWrapper |
||||
from colossalai.utils.model.colo_init_context import ColoInitContext |
||||
from tests.components_to_test.registry import non_distributed_component_funcs |
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False): |
||||
with torch.cuda.amp.autocast(enabled=enable_autocast): |
||||
if criterion: |
||||
y = model(data) |
||||
loss = criterion(y, label) |
||||
else: |
||||
loss = model(data, label) |
||||
loss = loss.float() |
||||
model.backward(loss) |
||||
|
||||
def run_param_wrapper_testing(): |
||||
test_models = ['repeated_computed_layers', 'simple_net', 'no_leaf_module', 'bert'] |
||||
|
||||
for model_name in test_models: |
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name) |
||||
model_builder, train_dataloader, _, _, criterion = get_components_func() |
||||
|
||||
with ColoInitContext(device=torch.device('cpu')): |
||||
model = model_builder(checkpoint=False) |
||||
|
||||
model = ParamWrapper(model) |
||||
|
||||
for i, (data, label) in enumerate(train_dataloader): |
||||
if i > 1: |
||||
break |
||||
data = data.cuda() |
||||
label = label.cuda() |
||||
|
||||
run_fwd_bwd(model, data, label, criterion, False) |
||||
|
||||
cuda_non_model_data_list = np.array(model.param_op_hook._non_model_data_list) / 1024 ** 2 |
||||
print("cuda_non_model_data_list", len(cuda_non_model_data_list)) |
||||
# print(model.param_op_hook._non_model_data_list) |
||||
|
||||
del model |
||||
|
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
run_param_wrapper_testing() |
Loading…
Reference in new issue