[Gemini] ParamMemHook (#2008)

pull/2017/head
Zihao 2022-11-24 15:22:51 +08:00 committed by GitHub
parent 0160a62a3c
commit aba3db464d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 81 additions and 0 deletions

View File

@ -0,0 +1,81 @@
from contextlib import contextmanager
from enum import Enum
from functools import partial
from typing import List
import torch
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
from colossalai.tensor.param_op_hook import ParamOpHook
class TrainingPhase(Enum):
FORWARD = 0
BACKWARD = 1
class ParamMemHook(ParamOpHook):
def __init__(self) -> None:
super().__init__()
self._training_phase = TrainingPhase.FORWARD
self.mem_monitor = SyncCudaMemoryMonitor()
self._non_model_data_list = []
self._model_data_list = []
def _move_params_to_dev(self, params, dev: str) -> int:
assert isinstance(dev, str), f"device should be a str not torch.device"
comm_volume = 0
for p in params:
if p.data.device.type != dev:
p.data = p.data.to(dev)
comm_volume += p.data.numel() * p.data.element_size()
if p.grad is not None:
if p.grad.device.type != dev:
p.grad = p.grad.to(dev)
comm_volume += p.grad.numel() * p.grad.element_size()
return comm_volume
def sample_model_data(self, params):
data_volume = 0
for p in params:
data_volume += p.data.numel() * p.data.element_size()
if self._training_phase == TrainingPhase.BACKWARD:
# add param.grad, actually param.grad is None in this time
data_volume *= 2
self._model_data_list.append(data_volume)
def pre_op(self, params):
cuda_volume = self.mem_monitor.finish()
if len(self._model_data_list):
self._non_model_data_list.append(cuda_volume - self._model_data_list[-1])
self._move_params_to_dev(params, 'cuda')
self.sample_model_data(params)
self.mem_monitor.start()
def post_op(self, params):
self._move_params_to_dev(params, 'cpu')
def pre_forward(self, params: List[torch.Tensor]) -> None:
self.pre_op(params)
def post_forward(self, params: List[torch.Tensor]) -> None:
self.post_op(params)
def pre_backward(self, params: List[torch.Tensor]) -> None:
self.pre_op(params)
def post_backward(self, params: List[torch.Tensor]) -> None:
self.post_op(params)
@contextmanager
def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD):
old_training_phase = self._training_phase
try:
self._training_phase = training_phase
yield
finally:
self._training_phase = old_training_phase
switch_to_backward = switch_training_phase
switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)