mirror of https://github.com/hpcaitech/ColossalAI
[dependency] removed torchvision (#833)
* [dependency] removed torchvision * fixed transformspull/838/head
parent
cb5a4778e1
commit
01e9f834f5
|
@ -1,22 +1,19 @@
|
|||
import torch.distributed.optim as dist_optim
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torchvision.models as tv_models
|
||||
import torchvision.datasets as tv_datasets
|
||||
from torchvision import transforms
|
||||
|
||||
from .registry import Registry
|
||||
|
||||
LAYERS = Registry("layers", third_party_library=[nn])
|
||||
LOSSES = Registry("losses")
|
||||
MODELS = Registry("models", third_party_library=[tv_models])
|
||||
MODELS = Registry("models")
|
||||
OPTIMIZERS = Registry("optimizers", third_party_library=[optim, dist_optim])
|
||||
DATASETS = Registry("datasets", third_party_library=[tv_datasets])
|
||||
DATASETS = Registry("datasets")
|
||||
DIST_GROUP_INITIALIZER = Registry("dist_group_initializer")
|
||||
GRADIENT_HANDLER = Registry("gradient_handler")
|
||||
LOSSES = Registry("losses", third_party_library=[nn])
|
||||
HOOKS = Registry("hooks")
|
||||
TRANSFORMS = Registry("transforms", third_party_library=[transforms])
|
||||
TRANSFORMS = Registry("transforms")
|
||||
DATA_SAMPLERS = Registry("data_samplers")
|
||||
LR_SCHEDULERS = Registry("lr_schedulers")
|
||||
SCHEDULE = Registry("schedules")
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
pytest
|
||||
rpyc
|
||||
matplotlib
|
||||
tensorboard
|
||||
torchvision
|
||||
transformers
|
||||
|
|
|
@ -1,9 +1,7 @@
|
|||
torch>=1.8
|
||||
torchvision>=0.9
|
||||
numpy
|
||||
tqdm
|
||||
psutil
|
||||
tensorboard
|
||||
packaging
|
||||
pre-commit
|
||||
rich
|
||||
|
|
|
@ -10,23 +10,10 @@ from torch.utils.data import DataLoader
|
|||
|
||||
from colossalai.builder import build_dataset, build_transform
|
||||
from colossalai.context import Config
|
||||
from torchvision.transforms import ToTensor
|
||||
|
||||
TRAIN_DATA = dict(
|
||||
dataset=dict(
|
||||
type='CIFAR10',
|
||||
root=Path(os.environ['DATA']),
|
||||
train=True,
|
||||
download=True
|
||||
),
|
||||
dataloader=dict(batch_size=4, shuffle=True, num_workers=2),
|
||||
transform_pipeline=[
|
||||
dict(type='ToTensor'),
|
||||
dict(type='Normalize',
|
||||
mean=(0.5, 0.5, 0.5),
|
||||
std=(0.5, 0.5, 0.5)
|
||||
)
|
||||
]
|
||||
)
|
||||
TRAIN_DATA = dict(dataset=dict(type='CIFAR10', root=Path(os.environ['DATA']), train=True, download=True),
|
||||
dataloader=dict(batch_size=4, shuffle=True, num_workers=2))
|
||||
|
||||
|
||||
@pytest.mark.cpu
|
||||
|
@ -37,7 +24,7 @@ def test_cifar10_dataset():
|
|||
transform_cfg = config.transform_pipeline
|
||||
|
||||
# build transform
|
||||
transform_pipeline = [build_transform(cfg) for cfg in transform_cfg]
|
||||
transform_pipeline = [ToTensor()]
|
||||
transform_pipeline = transforms.Compose(transform_pipeline)
|
||||
dataset_cfg['transform'] = transform_pipeline
|
||||
|
||||
|
|
|
@ -12,26 +12,25 @@ import torch.multiprocessing as mp
|
|||
from torch.utils.data import DataLoader
|
||||
|
||||
import colossalai
|
||||
from colossalai.builder import build_dataset, build_transform
|
||||
from colossalai.builder import build_dataset
|
||||
from torchvision import transforms
|
||||
from colossalai.context import ParallelMode, Config
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.utils import get_dataloader, free_port
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from torchvision.transforms import ToTensor
|
||||
|
||||
CONFIG = Config(
|
||||
dict(
|
||||
train_data=dict(dataset=dict(
|
||||
type='CIFAR10',
|
||||
root=Path(os.environ['DATA']),
|
||||
train=True,
|
||||
download=True,
|
||||
train_data=dict(
|
||||
dataset=dict(
|
||||
type='CIFAR10',
|
||||
root=Path(os.environ['DATA']),
|
||||
train=True,
|
||||
download=True,
|
||||
),
|
||||
dataloader=dict(batch_size=8,),
|
||||
),
|
||||
dataloader=dict(batch_size=8,),
|
||||
transform_pipeline=[
|
||||
dict(type='ToTensor'),
|
||||
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
||||
]),
|
||||
parallel=dict(
|
||||
pipeline=dict(size=1),
|
||||
tensor=dict(size=1, mode=None),
|
||||
|
@ -45,7 +44,7 @@ def run_data_sampler(rank, world_size, port):
|
|||
colossalai.launch(**dist_args)
|
||||
print('finished initialization')
|
||||
|
||||
transform_pipeline = [build_transform(cfg) for cfg in gpc.config.train_data.transform_pipeline]
|
||||
transform_pipeline = [ToTensor()]
|
||||
transform_pipeline = transforms.Compose(transform_pipeline)
|
||||
gpc.config.train_data.dataset['transform'] = transform_pipeline
|
||||
dataset = build_dataset(gpc.config.train_data.dataset)
|
||||
|
|
|
@ -13,26 +13,24 @@ from torchvision import transforms
|
|||
from torch.utils.data import DataLoader
|
||||
|
||||
import colossalai
|
||||
from colossalai.builder import build_dataset, build_transform
|
||||
from colossalai.builder import build_dataset
|
||||
from colossalai.context import ParallelMode, Config
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from torchvision import transforms
|
||||
|
||||
CONFIG = Config(
|
||||
dict(
|
||||
train_data=dict(dataset=dict(
|
||||
type='CIFAR10',
|
||||
root=Path(os.environ['DATA']),
|
||||
train=True,
|
||||
download=True,
|
||||
train_data=dict(
|
||||
dataset=dict(
|
||||
type='CIFAR10',
|
||||
root=Path(os.environ['DATA']),
|
||||
train=True,
|
||||
download=True,
|
||||
),
|
||||
dataloader=dict(num_workers=2, batch_size=2, shuffle=True),
|
||||
),
|
||||
dataloader=dict(num_workers=2, batch_size=2, shuffle=True),
|
||||
transform_pipeline=[
|
||||
dict(type='ToTensor'),
|
||||
dict(type='RandomCrop', size=32),
|
||||
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
||||
]),
|
||||
parallel=dict(
|
||||
pipeline=dict(size=1),
|
||||
tensor=dict(size=1, mode=None),
|
||||
|
@ -50,7 +48,7 @@ def run_data_sampler(rank, world_size, port):
|
|||
transform_cfg = gpc.config.train_data.transform_pipeline
|
||||
|
||||
# build transform
|
||||
transform_pipeline = [build_transform(cfg) for cfg in transform_cfg]
|
||||
transform_pipeline = [transforms.ToTensor(), transforms.RandomCrop(size=32)]
|
||||
transform_pipeline = transforms.Compose(transform_pipeline)
|
||||
dataset_cfg['transform'] = transform_pipeline
|
||||
|
||||
|
|
Loading…
Reference in New Issue