mirror of https://github.com/hpcaitech/ColossalAI
This reverts commit ac88de6dfc
.
pull/838/head
parent
5e00e6cf23
commit
cb5a4778e1
|
@ -19,18 +19,12 @@ def colo_linear(types, args, kwargs, pg):
|
|||
bias = None
|
||||
else:
|
||||
bias = kwargs.get('bias', None)
|
||||
|
||||
|
||||
if isinstance(bias, ColoTensor):
|
||||
bias = bias.torch_tensor()
|
||||
|
||||
# Add communication logic before and after linear call.
|
||||
if isinstance(weight, ColoTensor):
|
||||
if weight.shard_spec == None:
|
||||
return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias)
|
||||
elif weight.shard_spec == '1Drow':
|
||||
# TODO(jzy): implement 1Drow TP linear here.
|
||||
raise NotImplementedError
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input_tensor, weight, bias)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import torch
|
||||
from .op_wrapper import _COLOSSAL_OPS
|
||||
from typing import Tuple, Optional
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
class ColoTensor(object):
|
||||
|
@ -21,35 +21,20 @@ class ColoTensor(object):
|
|||
requires_grad=False,
|
||||
pin_memory=False,
|
||||
torch_tensor=torch.empty(0),
|
||||
shard_spec: str = None,
|
||||
):
|
||||
self._size = size
|
||||
self._dtype = dtype
|
||||
self._requires_grad = requires_grad
|
||||
self._pin_memory = pin_memory
|
||||
self._torch_tensor = torch_tensor
|
||||
self._shard_spec = shard_spec
|
||||
|
||||
@property
|
||||
def shard_spec(self) -> Optional[str]:
|
||||
return self._shard_spec
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
return self._torch_tensor.data
|
||||
|
||||
@property
|
||||
def grad(self):
|
||||
return self._torch_tensor.grad
|
||||
|
||||
@staticmethod
|
||||
def init_from_torch_tensor(tensor: torch.Tensor, shard_spec: str = None) -> 'ColoTensor':
|
||||
def init_from_torch_tensor(tensor: torch.Tensor):
|
||||
colo_t = ColoTensor(*tensor.size(),
|
||||
dtype=tensor.dtype,
|
||||
requires_grad=tensor.requires_grad,
|
||||
pin_memory=tensor.pin_memory,
|
||||
torch_tensor=tensor,
|
||||
shard_spec=shard_spec)
|
||||
torch_tensor=tensor)
|
||||
return colo_t
|
||||
|
||||
def del_torch_tensor(self) -> None:
|
||||
|
@ -82,5 +67,7 @@ class ColoTensor(object):
|
|||
if kwargs is None:
|
||||
kwargs = {}
|
||||
|
||||
kwargs = {k: v.torch_tensor() if isinstance(v, ColoTensor) else v for k, v in kwargs.items()}
|
||||
kwargs = {
|
||||
k: v.torch_tensor() if isinstance(v, ColoTensor) else v for k,v in kwargs.items()
|
||||
}
|
||||
return func(*args, **kwargs)
|
||||
|
|
|
@ -1,74 +0,0 @@
|
|||
from joblib import Parallel
|
||||
from numpy import allclose, require
|
||||
import torch
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.tensor import ColoTensor
|
||||
from copy import deepcopy
|
||||
|
||||
from functools import partial
|
||||
|
||||
import colossalai
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
|
||||
def run_linear_tp1d_row_test():
|
||||
in_dim = 4
|
||||
out_dim = 5
|
||||
|
||||
fc = torch.nn.Linear(in_dim, out_dim, bias=True)
|
||||
fc_ref = deepcopy(fc)
|
||||
|
||||
input_ref = torch.randn(1, in_dim)
|
||||
input_tensor = input_ref.clone()
|
||||
|
||||
# sharded_weight = ColoTensor.init_from_torch_tensor(fc_ref.weight, "1Drow")
|
||||
|
||||
# shard weight at begiin
|
||||
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
||||
sharded_weight = ColoTensor(in_dim / world_size, out_dim, shard_spec="1Drow")
|
||||
sharded_bias = ColoTensor.init_from_torch_tensor(fc_ref.bias)
|
||||
|
||||
# replace the torch nn.Parameters with ShardedTensor
|
||||
delattr(fc, 'weight')
|
||||
setattr(fc, 'weight', sharded_weight)
|
||||
delattr(fc, 'bias')
|
||||
setattr(fc, 'bias', sharded_bias)
|
||||
|
||||
fc.weight.requires_grad = True
|
||||
fc.bias.requires_grad = True
|
||||
|
||||
# torch.nn.functional.linear(torch.randn(1, in_dim), sharded_weight, sharded_bias)
|
||||
out = fc(input_tensor)
|
||||
loss = out.sum()
|
||||
loss.backward()
|
||||
|
||||
out_ref = fc_ref(input_ref)
|
||||
loss_ref = out_ref.sum()
|
||||
loss_ref.backward()
|
||||
|
||||
assert (loss_ref == loss)
|
||||
assert allclose(fc_ref.weight.grad, fc.weight.torch_tensor().grad)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_linear_tp1d_row_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_linear_1d(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_linear_1d(4)
|
Loading…
Reference in New Issue