2023-03-21 06:17:41 +00:00
|
|
|
import time
|
|
|
|
|
2023-04-03 09:12:22 +00:00
|
|
|
import pytest
|
2023-03-21 06:17:41 +00:00
|
|
|
import torch
|
2023-04-03 09:12:22 +00:00
|
|
|
from torch.utils._pytree import tree_map
|
2023-03-21 06:17:41 +00:00
|
|
|
|
|
|
|
import colossalai
|
2024-01-09 02:20:05 +00:00
|
|
|
from colossalai.accelerator import get_accelerator
|
2023-03-21 06:17:41 +00:00
|
|
|
from colossalai.auto_parallel.offload.amp_optimizer import AMPOptimizer
|
|
|
|
from colossalai.auto_parallel.offload.mem_optimize import memory_optimize
|
|
|
|
from colossalai.auto_parallel.offload.solver import NOT_NVML
|
2023-04-03 09:12:22 +00:00
|
|
|
from colossalai.fx.profiler import parameter_size
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
2023-04-06 06:51:35 +00:00
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
2023-04-04 05:48:16 +00:00
|
|
|
from colossalai.zero import ColoInitContext, zero_model_wrapper, zero_optim_wrapper
|
2023-03-21 06:17:41 +00:00
|
|
|
from tests.test_auto_parallel.test_offload.model_utils import *
|
2023-04-03 09:12:22 +00:00
|
|
|
from tests.test_tensor.common_utils import set_seed
|
2023-03-21 06:17:41 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
@parameterize("model_name", ["gpt2_"])
|
|
|
|
@parameterize("memory_budget", [5000])
|
|
|
|
@parameterize("solver_name", ["asyn"])
|
2023-04-03 09:12:22 +00:00
|
|
|
def exam_fwd_bwd(model_name: str, memory_budget: float, solver_name: str):
|
2023-03-21 06:17:41 +00:00
|
|
|
# build model
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
|
|
model_builder, data_gen = get_components_func()
|
2023-09-19 06:20:26 +00:00
|
|
|
label = torch.randint(
|
|
|
|
low=0,
|
|
|
|
high=128,
|
|
|
|
size=(
|
|
|
|
64,
|
|
|
|
8,
|
|
|
|
),
|
2024-01-09 02:20:05 +00:00
|
|
|
device=get_accelerator().get_current_device(),
|
2023-09-19 06:20:26 +00:00
|
|
|
)
|
2023-03-21 06:17:41 +00:00
|
|
|
criterion = LMLoss()
|
|
|
|
|
|
|
|
set_seed(42)
|
|
|
|
start_time = time.time()
|
|
|
|
model = model_builder()
|
|
|
|
model.train()
|
2023-04-03 09:12:22 +00:00
|
|
|
param_size = parameter_size(model) / 1024**2 / 2
|
2023-03-21 06:17:41 +00:00
|
|
|
init_time = time.time() - start_time
|
|
|
|
print(f"init_param_size={param_size:.3f} MB | init_model_time={init_time:.3f} s")
|
|
|
|
|
|
|
|
data_args = data_gen(device="cpu")
|
|
|
|
wrap_fn = lambda x: x.to(dtype=torch.half) if isinstance(x, torch.Tensor) and torch.is_floating_point(x) else x
|
|
|
|
data_args = tree_map(wrap_fn, data_args)
|
|
|
|
start_time = time.time()
|
|
|
|
model = memory_optimize(model, data_args, memory_budget * 1024 * 1024, solver_name)
|
|
|
|
solver_time = time.time() - start_time
|
|
|
|
print(f"solver_time={solver_time:.3f} s")
|
|
|
|
|
|
|
|
hybrid_optimizer = HybridAdam(model.model.parameters(), lr=1e-3)
|
|
|
|
optim = AMPOptimizer(hybrid_optimizer, model)
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
with ColoInitContext(device=torch.device("cpu")):
|
2023-03-21 06:17:41 +00:00
|
|
|
gemini_model = model_builder()
|
|
|
|
gemini_model.train()
|
|
|
|
|
|
|
|
hybrid_optimizer = HybridAdam(gemini_model.parameters(), lr=1e-3)
|
2023-09-19 06:20:26 +00:00
|
|
|
gemini_config = dict(
|
|
|
|
strict_ddp_mode=False,
|
|
|
|
device=torch.device("cpu"),
|
|
|
|
placement_policy="cpu",
|
|
|
|
pin_memory=True,
|
|
|
|
hidden_dim=8192,
|
|
|
|
search_range_m=128,
|
|
|
|
)
|
2023-03-21 06:17:41 +00:00
|
|
|
gemini_model = zero_model_wrapper(gemini_model, 3, gemini_config)
|
|
|
|
optim_config = dict(reduce_bucket_size=12 * 1024 * 1024, overlap_communication=True, verbose=True)
|
|
|
|
gemini_optim = zero_optim_wrapper(gemini_model, hybrid_optimizer, optim_config=optim_config)
|
|
|
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
|
|
|
|
# test gemini
|
|
|
|
time_list = []
|
|
|
|
set_seed(42)
|
|
|
|
data_args = data_gen(device="cuda")
|
|
|
|
for step in range(10):
|
|
|
|
gemini_optim.zero_grad()
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
start_time = time.time()
|
|
|
|
gemini_out = gemini_model(**data_args)
|
|
|
|
gemini_loss = criterion(gemini_out, label)
|
|
|
|
gemini_optim.backward(gemini_loss)
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
time_list.append(time.time() - start_time)
|
|
|
|
gemini_optim.step()
|
|
|
|
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
exec_time = sum(sorted(time_list)[:5]) / 5
|
2023-04-03 09:12:22 +00:00
|
|
|
runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2
|
|
|
|
runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2
|
2023-09-19 06:20:26 +00:00
|
|
|
print(f"gemini | model_name: {model_name}")
|
|
|
|
print(
|
|
|
|
f"| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB "
|
|
|
|
f"| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|"
|
|
|
|
)
|
2023-03-21 06:17:41 +00:00
|
|
|
print(time_list)
|
|
|
|
|
|
|
|
del data_args
|
|
|
|
del gemini_model
|
|
|
|
del gemini_optim
|
|
|
|
del gemini_out
|
|
|
|
del gemini_loss
|
|
|
|
|
|
|
|
# test asyn offload
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
|
|
|
|
time_list = []
|
|
|
|
set_seed(42)
|
|
|
|
data_args = data_gen(device="cuda")
|
|
|
|
data_args = tree_map(wrap_fn, data_args)
|
|
|
|
for step in range(10):
|
|
|
|
optim.zero_grad()
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
start_time = time.time()
|
|
|
|
loss = criterion(model(**data_args), label)
|
|
|
|
optim.backward(loss)
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
time_list.append(time.time() - start_time)
|
|
|
|
optim.step()
|
|
|
|
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
exec_time = sum(sorted(time_list)[:5]) / 5
|
2023-04-03 09:12:22 +00:00
|
|
|
runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2
|
|
|
|
runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2
|
2023-09-19 06:20:26 +00:00
|
|
|
print(f"solver_name: {solver_name} | model_name: {model_name}")
|
|
|
|
print(
|
|
|
|
f"| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB "
|
|
|
|
f"| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|"
|
|
|
|
)
|
2023-03-21 06:17:41 +00:00
|
|
|
print(time_list)
|
|
|
|
|
2023-04-03 09:12:22 +00:00
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
2023-03-21 06:17:41 +00:00
|
|
|
config = {}
|
2023-09-19 06:20:26 +00:00
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
2023-03-21 06:17:41 +00:00
|
|
|
exam_fwd_bwd()
|
|
|
|
|
|
|
|
|
2023-04-03 09:12:22 +00:00
|
|
|
@pytest.mark.skip("this test failed")
|
2023-09-19 06:20:26 +00:00
|
|
|
@pytest.mark.skipif(NOT_NVML, reason="pynvml is not installed")
|
2023-04-06 06:51:35 +00:00
|
|
|
@rerun_if_address_is_in_use()
|
2023-04-03 09:12:22 +00:00
|
|
|
def test_perf():
|
2023-04-06 06:51:35 +00:00
|
|
|
spawn(run_dist, 1)
|
2023-04-03 09:12:22 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
if __name__ == "__main__":
|
2023-04-03 09:12:22 +00:00
|
|
|
test_perf()
|