ColossalAI/tests/test_auto_parallel/test_offload/test_perf.py

158 lines
5.3 KiB
Python
Raw Normal View History

import time
import pytest
import torch
from torch.utils._pytree import tree_map
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.auto_parallel.offload.amp_optimizer import AMPOptimizer
from colossalai.auto_parallel.offload.mem_optimize import memory_optimize
from colossalai.auto_parallel.offload.solver import NOT_NVML
from colossalai.fx.profiler import parameter_size
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.zero import ColoInitContext, zero_model_wrapper, zero_optim_wrapper
from tests.test_auto_parallel.test_offload.model_utils import *
from tests.test_tensor.common_utils import set_seed
@parameterize("model_name", ["gpt2_"])
@parameterize("memory_budget", [5000])
@parameterize("solver_name", ["asyn"])
def exam_fwd_bwd(model_name: str, memory_budget: float, solver_name: str):
# build model
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, data_gen = get_components_func()
label = torch.randint(
low=0,
high=128,
size=(
64,
8,
),
device=get_accelerator().get_current_device(),
)
criterion = LMLoss()
set_seed(42)
start_time = time.time()
model = model_builder()
model.train()
param_size = parameter_size(model) / 1024**2 / 2
init_time = time.time() - start_time
print(f"init_param_size={param_size:.3f} MB | init_model_time={init_time:.3f} s")
data_args = data_gen(device="cpu")
wrap_fn = lambda x: x.to(dtype=torch.half) if isinstance(x, torch.Tensor) and torch.is_floating_point(x) else x
data_args = tree_map(wrap_fn, data_args)
start_time = time.time()
model = memory_optimize(model, data_args, memory_budget * 1024 * 1024, solver_name)
solver_time = time.time() - start_time
print(f"solver_time={solver_time:.3f} s")
hybrid_optimizer = HybridAdam(model.model.parameters(), lr=1e-3)
optim = AMPOptimizer(hybrid_optimizer, model)
with ColoInitContext(device=torch.device("cpu")):
gemini_model = model_builder()
gemini_model.train()
hybrid_optimizer = HybridAdam(gemini_model.parameters(), lr=1e-3)
gemini_config = dict(
strict_ddp_mode=False,
device=torch.device("cpu"),
placement_policy="cpu",
pin_memory=True,
hidden_dim=8192,
search_range_m=128,
)
gemini_model = zero_model_wrapper(gemini_model, 3, gemini_config)
optim_config = dict(reduce_bucket_size=12 * 1024 * 1024, overlap_communication=True, verbose=True)
gemini_optim = zero_optim_wrapper(gemini_model, hybrid_optimizer, optim_config=optim_config)
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
# test gemini
time_list = []
set_seed(42)
data_args = data_gen(device="cuda")
for step in range(10):
gemini_optim.zero_grad()
torch.cuda.synchronize()
start_time = time.time()
gemini_out = gemini_model(**data_args)
gemini_loss = criterion(gemini_out, label)
gemini_optim.backward(gemini_loss)
torch.cuda.synchronize()
time_list.append(time.time() - start_time)
gemini_optim.step()
torch.cuda.synchronize()
exec_time = sum(sorted(time_list)[:5]) / 5
runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2
runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2
print(f"gemini | model_name: {model_name}")
print(
f"| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB "
f"| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|"
)
print(time_list)
del data_args
del gemini_model
del gemini_optim
del gemini_out
del gemini_loss
# test asyn offload
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
time_list = []
set_seed(42)
data_args = data_gen(device="cuda")
data_args = tree_map(wrap_fn, data_args)
for step in range(10):
optim.zero_grad()
torch.cuda.synchronize()
start_time = time.time()
loss = criterion(model(**data_args), label)
optim.backward(loss)
torch.cuda.synchronize()
time_list.append(time.time() - start_time)
optim.step()
torch.cuda.synchronize()
exec_time = sum(sorted(time_list)[:5]) / 5
runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2
runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2
print(f"solver_name: {solver_name} | model_name: {model_name}")
print(
f"| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB "
f"| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|"
)
print(time_list)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_fwd_bwd()
@pytest.mark.skip("this test failed")
@pytest.mark.skipif(NOT_NVML, reason="pynvml is not installed")
@rerun_if_address_is_in_use()
def test_perf():
spawn(run_dist, 1)
if __name__ == "__main__":
test_perf()