import time import pytest import torch from torch.utils._pytree import tree_map import colossalai from colossalai.accelerator import get_accelerator from colossalai.auto_parallel.offload.amp_optimizer import AMPOptimizer from colossalai.auto_parallel.offload.mem_optimize import memory_optimize from colossalai.auto_parallel.offload.solver import NOT_NVML from colossalai.fx.profiler import parameter_size from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.zero import ColoInitContext, zero_model_wrapper, zero_optim_wrapper from tests.test_auto_parallel.test_offload.model_utils import * from tests.test_tensor.common_utils import set_seed @parameterize("model_name", ["gpt2_"]) @parameterize("memory_budget", [5000]) @parameterize("solver_name", ["asyn"]) def exam_fwd_bwd(model_name: str, memory_budget: float, solver_name: str): # build model get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, data_gen = get_components_func() label = torch.randint( low=0, high=128, size=( 64, 8, ), device=get_accelerator().get_current_device(), ) criterion = LMLoss() set_seed(42) start_time = time.time() model = model_builder() model.train() param_size = parameter_size(model) / 1024**2 / 2 init_time = time.time() - start_time print(f"init_param_size={param_size:.3f} MB | init_model_time={init_time:.3f} s") data_args = data_gen(device="cpu") wrap_fn = lambda x: x.to(dtype=torch.half) if isinstance(x, torch.Tensor) and torch.is_floating_point(x) else x data_args = tree_map(wrap_fn, data_args) start_time = time.time() model = memory_optimize(model, data_args, memory_budget * 1024 * 1024, solver_name) solver_time = time.time() - start_time print(f"solver_time={solver_time:.3f} s") hybrid_optimizer = HybridAdam(model.model.parameters(), lr=1e-3) optim = AMPOptimizer(hybrid_optimizer, model) with ColoInitContext(device=torch.device("cpu")): gemini_model = model_builder() gemini_model.train() hybrid_optimizer = HybridAdam(gemini_model.parameters(), lr=1e-3) gemini_config = dict( strict_ddp_mode=False, device=torch.device("cpu"), placement_policy="cpu", pin_memory=True, hidden_dim=8192, search_range_m=128, ) gemini_model = zero_model_wrapper(gemini_model, 3, gemini_config) optim_config = dict(reduce_bucket_size=12 * 1024 * 1024, overlap_communication=True, verbose=True) gemini_optim = zero_optim_wrapper(gemini_model, hybrid_optimizer, optim_config=optim_config) torch.cuda.empty_cache() torch.cuda.synchronize() torch.cuda.reset_peak_memory_stats() # test gemini time_list = [] set_seed(42) data_args = data_gen(device="cuda") for step in range(10): gemini_optim.zero_grad() torch.cuda.synchronize() start_time = time.time() gemini_out = gemini_model(**data_args) gemini_loss = criterion(gemini_out, label) gemini_optim.backward(gemini_loss) torch.cuda.synchronize() time_list.append(time.time() - start_time) gemini_optim.step() torch.cuda.synchronize() exec_time = sum(sorted(time_list)[:5]) / 5 runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2 runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2 print(f"gemini | model_name: {model_name}") print( f"| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB " f"| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|" ) print(time_list) del data_args del gemini_model del gemini_optim del gemini_out del gemini_loss # test asyn offload torch.cuda.empty_cache() torch.cuda.synchronize() torch.cuda.reset_peak_memory_stats() time_list = [] set_seed(42) data_args = data_gen(device="cuda") data_args = tree_map(wrap_fn, data_args) for step in range(10): optim.zero_grad() torch.cuda.synchronize() start_time = time.time() loss = criterion(model(**data_args), label) optim.backward(loss) torch.cuda.synchronize() time_list.append(time.time() - start_time) optim.step() torch.cuda.synchronize() exec_time = sum(sorted(time_list)[:5]) / 5 runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2 runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2 print(f"solver_name: {solver_name} | model_name: {model_name}") print( f"| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB " f"| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|" ) print(time_list) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_fwd_bwd() @pytest.mark.skip("this test failed") @pytest.mark.skipif(NOT_NVML, reason="pynvml is not installed") @rerun_if_address_is_in_use() def test_perf(): spawn(run_dist, 1) if __name__ == "__main__": test_perf()