2022-11-11 01:26:40 +00:00
|
|
|
import copy
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
2022-11-29 05:00:30 +00:00
|
|
|
from torch.testing import assert_close
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
import colossalai
|
2022-11-29 05:00:30 +00:00
|
|
|
from colossalai.testing.random import seed_all
|
2022-11-11 01:26:40 +00:00
|
|
|
from colossalai.utils import free_port
|
|
|
|
from colossalai.zero import LowLevelZeroOptimizer
|
|
|
|
|
|
|
|
|
2023-01-29 07:09:57 +00:00
|
|
|
class MlpModel(nn.Module):
|
2022-11-11 01:26:40 +00:00
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
def __init__(self):
|
2023-01-29 07:09:57 +00:00
|
|
|
super(MlpModel, self).__init__()
|
2022-11-29 05:00:30 +00:00
|
|
|
self.linear1 = nn.Linear(128, 256)
|
|
|
|
self.linear2 = nn.Linear(256, 512)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.linear1(x)
|
|
|
|
x = self.linear2(x)
|
|
|
|
return x
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
def half_close(a, b, loose=False):
|
|
|
|
rtol = None
|
|
|
|
atol = None
|
|
|
|
if loose:
|
|
|
|
rtol = 5e-2
|
|
|
|
atol = 5e-4
|
2022-11-11 01:26:40 +00:00
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
a = a.detach().half()
|
|
|
|
b = b.detach().half()
|
|
|
|
|
|
|
|
assert_close(a, b, rtol=rtol, atol=atol)
|
|
|
|
|
|
|
|
|
|
|
|
def exam_zero_1_2():
|
2022-11-11 01:26:40 +00:00
|
|
|
"""
|
|
|
|
In this test, we want to test whether zero stage 1 and 2
|
|
|
|
deliver the same numerical results despite different communication
|
|
|
|
pattern
|
|
|
|
|
|
|
|
we use these prefixes to differentiate the zero stage
|
|
|
|
oss: partition optimizer states
|
|
|
|
pg: partition gradients and optimizer states
|
|
|
|
|
|
|
|
"""
|
2022-11-29 05:00:30 +00:00
|
|
|
local_rank = torch.distributed.get_rank()
|
|
|
|
seed_all(2001)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
# create model
|
2023-01-29 07:09:57 +00:00
|
|
|
zero1_model = MlpModel().cuda()
|
2022-11-29 05:00:30 +00:00
|
|
|
zero2_model = copy.deepcopy(zero1_model)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
# create optimizer
|
2022-11-29 05:00:30 +00:00
|
|
|
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1)
|
|
|
|
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1)
|
|
|
|
zero1_optimizer = LowLevelZeroOptimizer(zero1_optimizer,
|
|
|
|
overlap_communication=True,
|
|
|
|
initial_scale=128,
|
|
|
|
verbose=True)
|
|
|
|
zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer,
|
|
|
|
overlap_communication=True,
|
|
|
|
partition_grad=True,
|
|
|
|
initial_scale=128)
|
|
|
|
# create data
|
|
|
|
seed_all(2001 + local_rank)
|
|
|
|
input_data = torch.randn(32, 128).cuda()
|
|
|
|
|
|
|
|
zero1_output = zero1_model(input_data)
|
|
|
|
zero2_output = zero2_model(input_data)
|
|
|
|
assert torch.equal(zero1_output, zero2_output)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
# zero-dp backward
|
2023-01-29 09:52:58 +00:00
|
|
|
zero1_optimizer.backward(zero1_output.mean().float(), sync_grad=False)
|
|
|
|
zero2_optimizer.backward(zero2_output.mean().float(), sync_grad=False)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()):
|
|
|
|
if z2p.grad is not None:
|
|
|
|
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad)))
|
|
|
|
assert torch.equal(z1p.grad, z2p.grad)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
2023-01-29 09:52:58 +00:00
|
|
|
zero1_optimizer._sync_grad()
|
|
|
|
zero2_optimizer._sync_grad()
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
# step
|
2022-11-29 05:00:30 +00:00
|
|
|
zero1_optimizer.step()
|
|
|
|
zero2_optimizer.step()
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
# check updated param
|
2022-11-29 05:00:30 +00:00
|
|
|
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
|
|
|
|
assert torch.equal(z1p.data, z2p.data)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
def exam_zero_1_torch_ddp():
|
2022-11-11 01:26:40 +00:00
|
|
|
"""
|
|
|
|
In this test, two pairs of model and optimizers are created.
|
|
|
|
1. zero: use sharded optimizer and fp16 parameters
|
|
|
|
2. torch: use torch DDP and fp32 parameters
|
|
|
|
|
|
|
|
We feed these two sets of models with the same input and check if the
|
|
|
|
differences in model output and updated parameters are within tolerance.
|
|
|
|
"""
|
2022-11-29 05:00:30 +00:00
|
|
|
local_rank = torch.distributed.get_rank()
|
|
|
|
seed_all(1453)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
# create models
|
2023-01-29 07:09:57 +00:00
|
|
|
zero_model = MlpModel()
|
2022-11-11 01:26:40 +00:00
|
|
|
torch_model = copy.deepcopy(zero_model)
|
|
|
|
|
|
|
|
zero_model = zero_model.cuda().half()
|
2023-01-13 06:56:17 +00:00
|
|
|
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0)
|
2022-11-29 05:00:30 +00:00
|
|
|
torch_model = torch_model.cuda()
|
|
|
|
|
|
|
|
# for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
|
|
|
# half_close(p.data, z1p.data)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
# create optimizer
|
2022-11-29 05:00:30 +00:00
|
|
|
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
# we only test stage 1 here
|
|
|
|
# in `check_sharded_param_consistency.py`, we will test whether
|
|
|
|
# level 1 and 2 will produce exactly the same results
|
|
|
|
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer,
|
|
|
|
overlap_communication=True,
|
|
|
|
initial_scale=1,
|
2022-11-29 05:00:30 +00:00
|
|
|
reduce_bucket_size=262144)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
seed_all(1453 + local_rank)
|
2022-11-11 01:26:40 +00:00
|
|
|
# create
|
|
|
|
input_data = torch.rand(32, 128).cuda()
|
|
|
|
|
|
|
|
# zero-dp forward
|
|
|
|
zero_output = zero_model(input_data.half())
|
|
|
|
|
|
|
|
# torch-ddp forward
|
|
|
|
torch_output = torch_model(input_data)
|
2022-11-29 05:00:30 +00:00
|
|
|
half_close(zero_output, torch_output, loose=True)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
# zero-dp backward
|
2023-01-29 09:52:58 +00:00
|
|
|
zero_optimizer.backward(zero_output.mean().float(), sync_grad=False)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
# torch-ddp backward
|
|
|
|
torch_output.mean().backward()
|
|
|
|
|
|
|
|
# check grad
|
2022-11-29 05:00:30 +00:00
|
|
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
|
|
|
half_close(p.grad, z1p.grad, loose=True)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
# zero-dp step
|
2023-01-29 09:52:58 +00:00
|
|
|
zero_optimizer._sync_grad()
|
2022-11-11 01:26:40 +00:00
|
|
|
zero_optimizer.step()
|
|
|
|
|
|
|
|
# torch ddp step
|
|
|
|
torch_optimizer.step()
|
|
|
|
|
|
|
|
# check updated param
|
2022-11-29 05:00:30 +00:00
|
|
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
|
|
|
# print(n, torch.max(torch.abs(p.data - z1p.data)))
|
|
|
|
half_close(p.data, z1p.data, loose=True)
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
|
|
|
|
2022-11-29 05:00:30 +00:00
|
|
|
exam_zero_1_torch_ddp()
|
|
|
|
exam_zero_1_2()
|
2022-11-11 01:26:40 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
2022-11-29 05:00:30 +00:00
|
|
|
def test_zero_1_2():
|
2022-11-11 01:26:40 +00:00
|
|
|
world_size = 2
|
|
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2022-11-29 05:00:30 +00:00
|
|
|
test_zero_1_2()
|