[zero] add zero wrappers (#2523)

* [zero] add zero wrappers

* change names

* add wrapper functions to init
pull/2527/head
HELSON 2023-01-29 17:52:58 +08:00 committed by GitHub
parent c198c7c0b0
commit b528eea0f0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 128 additions and 19 deletions

View File

@ -65,7 +65,8 @@ class ZeroOptimizer(ColossalaiOptimizer):
**defaults: Any):
super().__init__(optim)
assert isinstance(module, ZeroDDP)
assert type(optim) in _AVAIL_OPTIM_LIST, "you should use the optimizer in the available list"
assert type(optim) in _AVAIL_OPTIM_LIST, "You should use an optimizer in the available list:\n" \
f"{_AVAIL_OPTIM_LIST}"
self.module = module
self.gemini_manager = module.gemini_manager
self.chunk_manager: ChunkManager = self.gemini_manager.chunk_manager

View File

@ -1,4 +1,5 @@
from .data_parallel import ColoDDP, ZeroDDP
from .gemini_parallel import GeminiDDP
from .zero_wrapper import zero_model_wrapper, zero_optim_wrapper
__all__ = ['ColoDDP', 'ZeroDDP', 'GeminiDDP']
__all__ = ['ColoDDP', 'ZeroDDP', 'GeminiDDP', 'zero_model_wrapper', 'zero_optim_wrapper']

View File

@ -0,0 +1,106 @@
from copy import copy
from typing import Dict, Optional
import torch
import torch.nn as nn
from .gemini_parallel import GeminiDDP
def zero_model_wrapper(model: nn.Module, zero_stage: int = 1, gemini_config: Optional[Dict] = None):
"""This wrapper function is used to wrap your training model for ZeRO DDP.
Example:
>>> with ColoInitContext():
>>> my_model = Bert()
>>> my_optim = SGD(my_model.parameters(), lr = 1e-3)
>>> zero_model = zero_model_wrapper(my_model, zero_stage=1)
>>> zero_optim = zero_optim_wrapper(zero_model, my_optim)
Args:
model (nn.Module): The model used in ZeRO DDP.
zero_stage (int, optional): The stage of ZeRO DDP. You can find more information in ZeRO's paper.
https://arxiv.org/abs/1910.02054
gemini_config (dict, optional): The configuration dictionary of `GeminiDDP`. `GeminiDDP` is enabled
when the stage is set to 3. You can set the arguemnts of `GeminiDDP` in the gemini_config.
Here is an example where we set the device of the model, the placement policy of Gemini, and the
size of hidden dimension to help Gemini find out a unified chunk size.
Example:
>>> config_dict = dict(device=torch.cuda.current_device(), hidden_dim=1024, placement_policy='auto')
>>> model = zero_model_wrapper(model, zero_stage=3, gemini_config=config_dict)
"""
setattr(model, "_colo_zero_stage", zero_stage)
assert zero_stage in [1, 2, 3], "The stage of ZeRO should be 1, 2 or 3"
if gemini_config is None:
gemini_config = dict()
if zero_stage in [1, 2]:
return model
else:
return GeminiDDP(model, **gemini_config)
def zero_optim_wrapper(model: nn.Module,
optimizer: torch.optim.Optimizer,
initial_scale: float = 2**16,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
min_scale: float = 1,
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0,
optim_config: Optional[Dict] = None):
"""This wrapper function is used to wrap your training optimizer for ZeRO DDP.
Args:
model (nn.Module): Your model wrapped by `zero_model_wrapper`
optimizer (torch.optim.Optimizer): Your initialized optimizer
initial_scale (float, optional): initial_scale used by DynamicGradScaler.
min_scale (float, optional): min_scale used by DynamicGradScaler.
growth_factor (float, optional): growth_factor used by DynamicGradScaler.
backoff_factor (float, optional): backoff_factor used by DynamicGradScaler.
growth_interval (float, optional): growth_interval used by DynamicGradScaler.
hysteresis (float, optional): hysteresis used by DynamicGradScaler.
max_scale (int, optional): max_scale used by DynamicGradScaler.
max_norm (float, optional): max_norm used for `clip_grad_norm`. You should notice that you shall not do
clip_grad_norm by yourself when using ZeRO DDP. The ZeRO optimizer will take care of clip_grad_norm.
norm_type (float, optional): norm_type used for `clip_grad_norm`.
optim_config (dict, optinoal): The configuration used for the ZeRO optimizer.
Example:
>>> zero2_config = dict(reduce_bucket_size=12 * 1024 * 1024, overlap_communication=True)
>>> optim = zero_optim_wrapper(model, optim, optim_config=zero2_config)
"""
assert hasattr(model, "_colo_zero_stage"), "You should use `zero_ddp_wrapper` first"
zero_stage = getattr(model, "_colo_zero_stage")
assert norm_type == 2.0, "Current ZeRO optimizers only support 'norm_type=2'"
if optim_config is None:
config_dict = dict()
else:
config_dict = copy(optim_config)
config_dict['initial_scale'] = initial_scale
config_dict['growth_factor'] = growth_factor
config_dict['backoff_factor'] = backoff_factor
config_dict['growth_interval'] = growth_interval
config_dict['hysteresis'] = hysteresis
config_dict['min_scale'] = min_scale
config_dict['max_scale'] = max_scale
if zero_stage in [1, 2]:
from colossalai.zero.sharded_optim.low_level_optim import LowLevelZeroOptimizer
config_dict['partition_grad'] = zero_stage == 2
config_dict['clip_grad_norm'] = max_norm
return LowLevelZeroOptimizer(optimizer, **config_dict)
else:
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
config_dict['clipping_norm'] = max_norm
return ZeroOptimizer(optimizer, model, **config_dict)

View File

@ -17,7 +17,6 @@ from ._utils import (
calculate_global_norm_from_list,
compute_norm,
flatten,
get_grad_accumulate_object,
has_inf_or_nan,
reduce_tensor_dp_group,
release_param_grad,
@ -386,7 +385,7 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
# torch.optim.Optimizer methods
################################
def backward(self, loss, retain_graph=False):
def backward(self, loss, retain_graph=False, sync_grad=True):
loss = self.loss_scale * loss
loss.backward(retain_graph=retain_graph)
@ -402,6 +401,10 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
torch.cuda.synchronize()
self._param_store.clear_grads_of_previous_reduced_params()
# gradient synchronization
if sync_grad:
self._sync_grad()
def zero_grad(self, set_to_none=True):
"""
Set parameter gradients to zero. If set_to_none = True, gradient
@ -537,7 +540,7 @@ class LowLevelZeroOptimizer(ColossalaiOptimizer):
# Gradient Synchronization #
############################
def sync_grad(self):
def _sync_grad(self):
# update param already reduced flag
reduction_states = self._param_store.get_param_reduction_states()
for tensor, state in reduction_states.items():

View File

@ -9,7 +9,6 @@ from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.tensor import ProcessGroup
from colossalai.testing.random import seed_all
from colossalai.utils import free_port
from colossalai.zero import LowLevelZeroOptimizer
@ -60,16 +59,16 @@ def exam_zero_1_2_grad_acc():
assert torch.equal(zero1_output, zero2_output)
# zero-dp backward
zero1_optimizer.backward(zero1_output.sum().float())
zero2_optimizer.backward(zero2_output.sum().float())
zero1_optimizer.backward(zero1_output.sum().float(), sync_grad=False)
zero2_optimizer.backward(zero2_output.sum().float(), sync_grad=False)
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()):
if z2p.grad is not None:
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad)))
assert torch.equal(z1p.grad, z2p.grad)
zero1_optimizer.sync_grad()
zero2_optimizer.sync_grad()
zero1_optimizer._sync_grad()
zero2_optimizer._sync_grad()
fwd_bwd_func(0, input_data1)
fwd_bwd_func(1, input_data2)
@ -124,7 +123,7 @@ def exam_zero_1_grad_acc():
assert torch.equal(zero_output, torch_output)
# zero-dp backward
zero_optimizer.backward(zero_output.sum().float())
zero_optimizer.backward(zero_output.sum().float(), sync_grad=False)
# torch-ddp backward
torch_output.sum().backward()
@ -135,7 +134,7 @@ def exam_zero_1_grad_acc():
# print(n, p.shape, torch.max(torch.abs(p.grad - unscale_grad)))
assert torch.equal(p.grad, unscale_grad)
zero_optimizer.sync_grad()
zero_optimizer._sync_grad()
fwd_bwd_func(0, input_data1, True)
fwd_bwd_func(1, input_data2, False)

View File

@ -78,16 +78,16 @@ def exam_zero_1_2():
assert torch.equal(zero1_output, zero2_output)
# zero-dp backward
zero1_optimizer.backward(zero1_output.mean().float())
zero2_optimizer.backward(zero2_output.mean().float())
zero1_optimizer.backward(zero1_output.mean().float(), sync_grad=False)
zero2_optimizer.backward(zero2_output.mean().float(), sync_grad=False)
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()):
if z2p.grad is not None:
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad)))
assert torch.equal(z1p.grad, z2p.grad)
zero1_optimizer.sync_grad()
zero2_optimizer.sync_grad()
zero1_optimizer._sync_grad()
zero2_optimizer._sync_grad()
# step
zero1_optimizer.step()
@ -146,7 +146,7 @@ def exam_zero_1_torch_ddp():
half_close(zero_output, torch_output, loose=True)
# zero-dp backward
zero_optimizer.backward(zero_output.mean().float())
zero_optimizer.backward(zero_output.mean().float(), sync_grad=False)
# torch-ddp backward
torch_output.mean().backward()
@ -156,7 +156,7 @@ def exam_zero_1_torch_ddp():
half_close(p.grad, z1p.grad, loose=True)
# zero-dp step
zero_optimizer.sync_grad()
zero_optimizer._sync_grad()
zero_optimizer.step()
# torch ddp step

View File

@ -74,7 +74,6 @@ def exam_zero_with_tp(overlap_flag, partition_flag):
torch_loss.backward()
torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0)
hybrid_optim.backward(hybrid_loss)
hybrid_optim.sync_grad()
torch_optim.step()
hybrid_optim.step()