ColossalAI/colossalai/auto_parallel/offload/base_offload_module.py

110 lines
3.6 KiB
Python
Raw Normal View History

from typing import Optional, Set
from functools import partial
import torch
import torch.nn as nn
from colossalai.nn.parallel.data_parallel import _cast_float
from colossalai.gemini.tensor_utils import free_storage
from .region_manager import RegionManager
from .util import GlobalRuntimeInfo
class BaseOffloadModule:
"""
BaseOffloadModule: A model wrapper for parameter offloading.
Args:
model (nn.Module): model to apply offloading.
region_manager (RegionManager): a ``RegionManager`` instance.
is_sync (bool): synchronous mode or not.
"""
def __init__(self,
model: nn.Module,
region_manager: RegionManager,
is_sync=True):
self.model = model
self.region_manager = region_manager
self.grad_hook_list = []
self.overflow_counter = torch.cuda.IntTensor([0])
self.grad_offload_stream = torch.cuda.current_stream() if is_sync else GlobalRuntimeInfo.d2h_stream
self._cast_buffers()
def register_grad_hook(self):
for p in self.model.parameters():
if p.requires_grad:
self.grad_hook_list.append(p.register_hook(partial(self.grad_handle, p)))
def remove_grad_hook(self):
for hook in self.grad_hook_list:
hook.remove()
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def _pre_forward(self):
self.register_grad_hook()
for region in self.region_manager.region_list:
region.cpu_grad = None
def forward(self, *args, **kwargs):
args, kwargs = _cast_float(args, torch.half), _cast_float(kwargs, torch.half)
self.model.zero_grad(set_to_none=True)
self._pre_forward()
outputs = self.model(*args, **kwargs)
return outputs
def backward(self, loss):
loss.backward()
self._post_backward()
def _post_backward(self):
torch.cuda.synchronize()
self.remove_grad_hook()
for p in self.model.parameters():
p.grad = None
GlobalRuntimeInfo.fwd_prefetch_event_map.clear()
GlobalRuntimeInfo.bwd_prefetch_event_map.clear()
def grad_handle(self, p, grad):
empty_grad = torch.empty_like(grad)
free_storage(empty_grad)
with torch._C.DisableTorchFunction():
region = self.region_manager.get_region(p)
region.copy_grad_to_region_slice(p, grad)
if region.can_release:
self.overflow_counter += region.has_inf_or_nan
master_stream = torch.cuda.current_stream()
with torch.cuda.stream(self.grad_offload_stream):
GlobalRuntimeInfo.d2h_stream.wait_stream(master_stream)
region.move_grad_to_cpu()
return empty_grad
def _cast_buffers(self):
for buffer in self.model.buffers():
buffer.data = buffer.cuda()
def parameters(self, recurse: bool = True):
return self.model.parameters(recurse)
def named_parameters(self, prefix: str = '', recurse: bool = True):
return self.model.named_parameters(prefix, recurse)
def named_buffers(self, prefix: str = '', recurse: bool = True):
return self.model.named_buffers(prefix, recurse)
def named_children(self):
return self.model.named_children()
def named_modules(self,
memo: Optional[Set[torch.nn.Module]] = None,
prefix: str = '',
remove_duplicate: bool = True):
return self.model.named_modules(memo, prefix, remove_duplicate)