from typing import Optional, Set from functools import partial import torch import torch.nn as nn from colossalai.nn.parallel.data_parallel import _cast_float from colossalai.gemini.tensor_utils import free_storage from .region_manager import RegionManager from .util import GlobalRuntimeInfo class BaseOffloadModule: """ BaseOffloadModule: A model wrapper for parameter offloading. Args: model (nn.Module): model to apply offloading. region_manager (RegionManager): a ``RegionManager`` instance. is_sync (bool): synchronous mode or not. """ def __init__(self, model: nn.Module, region_manager: RegionManager, is_sync=True): self.model = model self.region_manager = region_manager self.grad_hook_list = [] self.overflow_counter = torch.cuda.IntTensor([0]) self.grad_offload_stream = torch.cuda.current_stream() if is_sync else GlobalRuntimeInfo.d2h_stream self._cast_buffers() def register_grad_hook(self): for p in self.model.parameters(): if p.requires_grad: self.grad_hook_list.append(p.register_hook(partial(self.grad_handle, p))) def remove_grad_hook(self): for hook in self.grad_hook_list: hook.remove() def __call__(self, *args, **kwargs): return self.forward(*args, **kwargs) def _pre_forward(self): self.register_grad_hook() for region in self.region_manager.region_list: region.cpu_grad = None def forward(self, *args, **kwargs): args, kwargs = _cast_float(args, torch.half), _cast_float(kwargs, torch.half) self.model.zero_grad(set_to_none=True) self._pre_forward() outputs = self.model(*args, **kwargs) return outputs def backward(self, loss): loss.backward() self._post_backward() def _post_backward(self): torch.cuda.synchronize() self.remove_grad_hook() for p in self.model.parameters(): p.grad = None GlobalRuntimeInfo.fwd_prefetch_event_map.clear() GlobalRuntimeInfo.bwd_prefetch_event_map.clear() def grad_handle(self, p, grad): empty_grad = torch.empty_like(grad) free_storage(empty_grad) with torch._C.DisableTorchFunction(): region = self.region_manager.get_region(p) region.copy_grad_to_region_slice(p, grad) if region.can_release: self.overflow_counter += region.has_inf_or_nan master_stream = torch.cuda.current_stream() with torch.cuda.stream(self.grad_offload_stream): GlobalRuntimeInfo.d2h_stream.wait_stream(master_stream) region.move_grad_to_cpu() return empty_grad def _cast_buffers(self): for buffer in self.model.buffers(): buffer.data = buffer.cuda() def parameters(self, recurse: bool = True): return self.model.parameters(recurse) def named_parameters(self, prefix: str = '', recurse: bool = True): return self.model.named_parameters(prefix, recurse) def named_buffers(self, prefix: str = '', recurse: bool = True): return self.model.named_buffers(prefix, recurse) def named_children(self): return self.model.named_children() def named_modules(self, memo: Optional[Set[torch.nn.Module]] = None, prefix: str = '', remove_duplicate: bool = True): return self.model.named_modules(memo, prefix, remove_duplicate)