With the development of deep learning model size, it is important to shift to a new training paradigm. The traditional training method with no parallelism and optimization became a thing of the past and new training methods are the key to make training large-scale models efficient and cost-effective.
Colossal-AI is designed to be a unified system to provide an integrated set of training skills and utilities to the user. You can find the common training utilities such as mixed precision training and gradient accumulation. Besides, we provide an array of parallelism including data, tensor and pipeline parallelism. We optimize tensor parallelism with different multi-dimensional distributed matrix-matrix multiplication algorithm. We also provided different pipeline parallelism methods to allow the user to scale their model across nodes efficiently. More advanced features such as offloading can be found in this tutorial documentation in detail as well.